
BitFlow SDK

Reference Manual

BitFlow, Inc.
400 West Cummings Park, Suite 5050
Woburn, MA 01801
USA
Tel: 781-932-2900
Fax: 781-933-9965
Email: support@bitflow.com
Web: www.bitflow.com
Revision G.8

© 2020 BitFlow, Inc. All Rights Reserved.

This document, in whole or in part, may not be copied, photocopied, reproduced, trans-
lated or reduced to any other electronic medium or machine readable form without the
prior written consent of BitFlow, Inc.

BitFlow, Inc. makes no implicit warranty for the use of its products and assumes no
responsibility for any errors that may appear in this document, nor does it make a commit-
ment to update the information contained herein.

BitFlow, Inc. retains the right to make changes to these specifications at any time without
notice.

All trademarks are properties of their respective holders.

Revision History:

Rev. Date Details

A.1 1996 -11-01 First Printing

A.2 1996-12-10 Format changes and corrections

B.1 1998-12-01 Second Printing

B.2 1999-01-16 Second Printing, minor changes

B.3 1999-05-30 Second Printing, minor changes

C.0 2001-06-01 Third Printing

C.1 2002-04-15 Formatting, corrections, updating to latest releases

D.0 2003-3-15 Ported to structured format. Typeface changes.
Added R64 API.

E.0 2005-12-15 Formatting changes, synchronized with SDK 4.50

G.0 2008-06-01 Updates to synchronize with SDK 5.00

G.1 2009-12-01 Updates to synchronize with SDK 5.30

G.2 2010-11-19 Updates to synchronize with SDK 5.40

G.3 2011-12-16 Updates to synchronize with SDK 5.60

G.4 2012-07-19 Updates to synchronize with SDK 5.70

G.5 2014-10-01 Updates to synchronize with SDK 5.90

G.6 2016-05-17 Updates to synchronize with SDK 6.20

G.7 2018-07-01 Updates to synchronize with SDK 6.30

G.8 2020-01-07 Updates to synchronize with SDK 6.40

Table Of Contents

BitFlow, Inc.

Table Of Contents

P - Preface

Purpose SDK-P-1
The History of the BitFlow APIs SDK-P-2
The APIs SDK-P-3
Which API Should I Use? SDK-P-5
Organization SDK-P-6
Support Services SDK-P-7

Technical Support SDK-P-7
Sales Support SDK-P-7

1 - SDK Introduction

Overview SDK-1-1
Camera Configuration Files SDK-1-2
Specifying Camera Configuration Files SDK-1-3

Camera Configuration File Specified Via SysReg SDK-1-3
Specifying Multiple Camera Configuration Files in SysReg SDK-1-3
Camera Configuration File Specified Via a Board Open Function SDK-1-3
Specifying the Camera Configuration File After the Board is Opened SDK-1-3
Specifying a Default Camera Configuration File in the Registry SDK-1-4

SDK Utilities SDK-1-5
SDK Example Applications SDK-1-6
Support for Other Languages SDK-1-7

1 - BufIn Introduction

Overview SDK-1-1

2 - BufIn Board Functions

Introduction SDK-2-1
BiBrdOpen SDK-2-2
BiBrdOpenEx SDK-2-4
BiBrdOpenCam SDK-2-6
BiBrdOpenCamEx SDK-2-8
BiBrdOpenSWConnector SDK-2-10
BiBrdInquire SDK-2-12
BiBrdClose SDK-2-15

Table Of Contents

BitFlow, Inc.

3 - BufIn Camera Functions

Introduction SDK-3-1
BiCamOpen SDK-3-2
BiCamClose SDK-3-3
BiCamSel SDK-3-4
BiCamSetCur SDK-3-5
BiCamGetCur SDK-3-6
BiCamGetFileName SDK-3-7

4 - BufIn Acquisition Functions

Introduction SDK-4-1
BiSeqAqSetup SDK-4-2
BiSeqAqSetupROI SDK-4-4
BiSeqAqSetupPitch SDK-4-7
BiCircAqSetup SDK-4-10
BiCircAqSetupROI SDK-4-12
BiCircAqSetupPitch SDK-4-15
BiSeqCleanUp SDK-4-18
BiCircCleanUp SDK-4-19
BiInternalTimeoutSet SDK-4-20
BiCallBackAdd SDK-4-21
BiCallBackRemove SDK-4-23

5 - BufIn Memory Functions

Introduction SDK-5-1
BiBufferAllocCam SDK-5-2
BiBufferAlloc SDK-5-3
BiBufferAssign SDK-5-5
BiBufferFree SDK-5-7
BiBufferUnassign SDK-5-8
BiBufferArrayGet SDK-5-9
BiBufferClear SDK-5-10
BiBufferAllocAlignedCam SDK-5-11
BiBufferAllocAligned SDK-5-12

6 - BufIn Sequence Capture Management

Introduction SDK-6-1
BiSeqParameters SDK-6-2
BiSeqWaitDone SDK-6-3
BiSeqControl SDK-6-4
BiSeqErrorWait SDK-6-6
BiSeqErrorCheck SDK-6-7
BiSeqStatusGet SDK-6-8
BiSeqWaitDoneFrame SDK-6-9

Table Of Contents

BitFlow, Inc.

BiSeqBufferStatus SDK-6-10
BiSeqBufferStatusClear SDK-6-11

7 - BufIn Circular Capture Management

Introduction SDK-7-1
BiCirControl SDK-7-2
BiCirErrorWait SDK-7-4
BiCirErrorCheck SDK-7-5
BiCirWaitDoneFrame SDK-7-6
BiCirStatusSet SDK-7-8
BiCirStatusGet SDK-7-10
BiCirBufferStatusSet SDK-7-11
BiCirBufferStatusGet SDK-7-13
BiBufferQueueSize SDK-7-14

8 - BufIn Trigger Functions

Introduction SDK-8-1
BiTrigModeSet SDK-8-2
BiTrigModeGet SDK-8-6
BiTrigForce SDK-8-8

9 - BufIn Disk I/O Functions

Introduction SDK-9-1
BiDiskBufWrite SDK-9-2
BiDiskBufRead SDK-9-6
BiDiskParamRead SDK-9-8

10 - BufIn Status Functions

Introduction SDK-10-1
BiControlStatusGet SDK-10-2
BiCaptureStatusGet SDK-10-3
BiDVersion SDK-10-4

11 - BufIn Error Functions

Introduction SDK-11-1
BiErrorShow SDK-11-2
BiErrorTextGet SDK-11-3
BiErrorList SDK-11-4

Table Of Contents

BitFlow, Inc.

12 - Camera Interface (Ci) Introduction

Overview SDK-12-1

13 - Ci System Open and Initialization

Introduction SDK-13-1
Specifying Camera Configuration Files SDK-13-3
CiSysBrdEnum SDK-13-4
CiSysBrdFind SDK-13-5
CiSysBoardFindSWConnector SDK-13-7
CiBrdOpen SDK-13-9
CiBrdOpenCam SDK-13-11
CiBrdCamSel SDK-13-13
CiBrdCamSetCur SDK-13-14
CiBrdInquire SDK-13-15
CiBrdClose SDK-13-17
CiBrdAqTimeoutSet SDK-13-18
CiBrdCamGetCur SDK-13-19
CiBrdType SDK-13-20
CiBrdAqSigSetCur SDK-13-21
CiBrdAqSigGetCur SDK-13-22
CiBrdCamGetFileName SDK-13-23
CiBrdCamGetFileNameWithPath SDK-13-24
CiBrdCamGetMMM SDK-13-25
CiMMMIterate SDK-13-26

14 - Ci Camera Configuration

Introduction SDK-14-1
CiCamOpen SDK-14-2
CiCamInquire SDK-14-4
CiCamClose SDK-14-7
CiCamAqTimeoutSet SDK-14-8
CiCamModeSet SDK-14-9
CiCamModeGet SDK-14-10
CiCamModesEnum SDK-14-11
CiCamUpdateParams SDK-14-13

15 - Ci Signal Functions

Introduction SDK-15-1
CiSignalCreate SDK-15-3
CiSignalWait SDK-15-9
CiSignalWaitEx SDK-15-11
CiSignalNextWait SDK-15-13
CiSignalCancel SDK-15-14
CiSignalQueueSize SDK-15-15

Table Of Contents

Version BitFlow, Inc. -TOC-5

CiSignalQueueClear SDK-15-16
CiSignalFree SDK-15-17
CiCallBackAdd SDK-15-18
CiCallBackRemove SDK-15-20
CiSignalNameGet SDK-15-21

16 - Ci LUTs

Introduction SDK-16-1
CiLutPeek SDK-16-2
CiLutPoke SDK-16-3
CiLutRead SDK-16-5
CiLutWrite SDK-16-7
CiLutFill SDK-16-9
CiLutRamp SDK-16-11

17 - Ci Acquisition

Introduction SDK-17-1
CiAqSetup SDK-17-3
CiAqSetup2Brds SDK-17-7
CiAqCommand SDK-17-10
CiAqCleanUp SDK-17-13
CiAqCleanUp2Brds SDK-17-14
CiAqWaitDone SDK-17-15
CiAqNextBankSet SDK-17-17
CiAqFrameSize SDK-17-19
CiAqLastLine SDK-17-21
CiAqReengage SDK-17-22
CiAqROISet SDK-17-24

18 - Ci Mid-Level Control Functions

Introduction SDK-18-1
CiConAqCommand SDK-18-2
CiConAqStatus SDK-18-3
CiConInt SDK-18-4
CiConVTrigModeSet SDK-18-6
CiConVTrigModeSetEx SDK-18-12
CiConVTrigModeGet SDK-18-14
CiConVTrigModeGetEx SDK-18-16
CiConHTrigModeSet SDK-18-18
CiConHTrigModeGet SDK-18-20
CiConTriggerInputGet SDK-18-22
CiConTriggerInputSet SDK-18-24
CiConEncoderInputGet SDK-18-26
CiConEncoderInputSet SDK-18-28

-TOC-6 BitFlow, Inc. Version

CiConTriggerInputSet SDK-18-31
CiConSwTrig SDK-18-33
CiConSwTrigStat SDK-18-35
CiConExTrigConnect SDK-18-36
CiConExTrigStatus SDK-18-37
CiConHWTrigStat SDK-18-38
CiConDMACommand SDK-18-39
CiShutDown SDK-18-40
CiConAqMode SDK-18-41
CiConFIFOReset SDK-18-42
CiConCtabReset SDK-18-43
CiConGetFrameCount SDK-18-44
CiConIntModeSet SDK-18-45
CiConIntModeGet SDK-18-46
CiConExposureControlSet SDK-18-47
CiConExposureControlGet SDK-18-50
CiEncoderDividerSet SDK-18-52
CiEncoderDividerGet SDK-18-54
CiConNumFramesSet SDK-18-55
CiConIsCameraReady SDK-18-56
CiConCamLineWidthSet SDK-18-57

19 - Ci Quad Table Functions

Introduction SDK-19-1
CiRelQTabCreate SDK-19-2
CiRelQTabFree SDK-19-6
CiPhysQTabCreate SDK-19-7
CiPhysQTabWrite SDK-19-9
CiPhysQTabFree SDK-19-11
CiPhysQTabEngage SDK-19-12
CiPhysQTabChainLink SDK-19-13
CiPhysQTabChainBreak SDK-19-15
CiPhysQTabChainEngage SDK-19-16
CiPhysQTabChainProgress SDK-19-17
CiChainSIPEnable SDK-19-18
CiChainSIPDisable SDK-19-19

20 - Ci Control Tables

Introduction SDK-20-1
CiCTabPeek SDK-20-2
CiCTabPoke SDK-20-4
CiCTabRead SDK-20-5
CiCTabWrite SDK-20-6
CiCTabFill SDK-20-7
CiCTabRamp SDK-20-8
CiCTabVSize SDK-20-9

Table Of Contents

Version BitFlow, Inc. -TOC-7

CiCTabHSize SDK-20-10

21 - Road Runner and R3 Introduction

Overview SDK-21-1
Where is the R3 or PMC API? SDK-21-3

22 - Road Runner/R3 System Open and Initialization

Introduction SDK-22-1
R2SysBoardFindByNum SDK-22-3
R2BrdOpen SDK-22-4
R2BrdOpenCam SDK-22-6
R2BrdCamSel SDK-22-8
R2BrdCamSetCur SDK-22-9
R2BrdInquire SDK-22-10
R2BrdClose SDK-22-12
R2BrdAqTimeoutSet SDK-22-13
R2BrdAqSigGetCur SDK-22-14
R2BrdAqSigSetCur SDK-22-15
R2BrdQTabGetCur SDK-22-16
R2BrdQTabSetCur SDK-22-17
R2BrdCamGetFileName SDK-22-18
R2BrdCamGetCur SDK-22-19

23 - Road Runner/R3 Acquisition

Introduction SDK-23-1
R2AqSetup SDK-23-3
R2AqCommand SDK-23-5
R2AqCleanUp SDK-23-7
R2AqWaitDone SDK-23-8
R2AqNextBankSet SDK-23-9
R2AqFrameSize SDK-23-10
R2AqReengage SDK-23-12
R2AqROISet SDK-23-13

24 - Road Runner/R3 Camera Configuration

Introduction SDK-24-1
R2CamOpen SDK-24-2
R2CamInquire SDK-24-4
R2CamClose SDK-24-6
R2CamAqTimeoutSet SDK-24-7

-TOC-8 BitFlow, Inc. Version

25 - Road Runner/R3 Interrupt Signals

Introduction SDK-25-1
R2SignalCreate SDK-25-3
R2SignalWait SDK-25-5
R2SignalNextWait SDK-25-7
R2SignalCancel SDK-25-8
R2SignalQueueSize SDK-25-9
R2SignalQueueClear SDK-25-10
R2SignalFree SDK-25-11

26 - Road Runner/R3 Camera Control Functions

Introduction SDK-26-1
R2CamLineScanTimingFreeRunGetRange SDK-26-2
R2CamLineScanTimingFreeRunSet SDK-26-4
R2CamLineScanTimingFreeRunGet SDK-26-6
R2CamLineScanTimingOneShotGetRange SDK-26-7
R2CamLineScanTimingOneShotSet SDK-26-8
R2CamLineScanTimingOneShotGet SDK-26-9

27 - Road Runner/R3 LUTS

Introduction SDK-27-1
R2LutPeek SDK-27-2
R2LutPoke SDK-27-3
R2LutRead SDK-27-5
R2LutWrite SDK-27-7
R2LutFill SDK-27-9
R2LutRamp SDK-27-11
R2LutMax SDK-27-13

28 - Road Runner/R3 Mid-Level Control Functions

Introduction SDK-28-1
R2ConAqCommand SDK-28-2
R2ConAqStatus SDK-28-3
R2ConAqMode SDK-28-4
R2ConInt SDK-28-5
R2ConDMACommand SDK-28-6
R2DMATimeout SDK-28-8
R2DMAProgress SDK-28-9
R2LastLine SDK-28-10
R2ShutDown SDK-28-11
R2ConSwTrigStat SDK-28-12
R2ConHWTrigStat SDK-28-13
R2ConFIFOReset SDK-28-14
R2ConCtabReset SDK-28-15

Table Of Contents

Version BitFlow, Inc. -TOC-9

R2ConVTrigModeSet SDK-28-16
R2ConVTrigModeGet SDK-28-18
R2ConHTrigModeSet SDK-28-19
R2ConHTrigModeGet SDK-28-20
R2ConExTrigConnect SDK-28-21
R2ConExTrigStatus SDK-28-22
R2ConGPOutSet SDK-28-23
R2ConGPOutGet SDK-28-24

29 - Road Runner/R3 Data Control Functions

Introduction SDK-29-1
R2ConQTabBank SDK-29-2
R2ConFreq SDK-29-3
R2ConGPOut SDK-29-4
R2ConSwTrig SDK-29-5
R2ConTrigAqCmd SDK-29-6
R2ConTrigSel SDK-29-7
R2ConVMode SDK-29-8
R2ConHMode SDK-29-9
R2ConTapMirror SDK-29-10

30 - Road Runner/R3 Quad Table Functions

Introduction SDK-30-1
R2RelQTabCreate SDK-30-2
R2RelQTabCreateRoi SDK-30-5
R2RelQTabFree SDK-30-8
R2PhysQTabCreate SDK-30-9
R2PhysQTabWrite SDK-30-10
R2PhysQTabEOC SDK-30-11
R2PhysQTabFree SDK-30-13
R2RelDisplayQTabCreate SDK-30-14
R2PhysQTabEngage SDK-30-17
R2PhysQTabChainLink SDK-30-18
R2PhysQTabChainBreak SDK-30-20
R2PhysQTabChainEngage SDK-30-21
R2PhysQTabChainProgress SDK-30-22
R2ChainSIPEnable SDK-30-23
R2ChainSIPDisable SDK-30-24

31 - Road Runner/R3 Register Access

Introduction SDK-31-1
R2RegPeek SDK-31-2
R2RegPeekWait SDK-31-3
R2RegPoke SDK-31-5

-TOC-10 BitFlow, Inc. Version

R2RegRMW SDK-31-6
R2RegName SDK-31-7
R2RegFlags SDK-31-8
R2RegShift SDK-31-9
R2RegMask SDK-31-10
R2RegObjectId SDK-31-11

32 - Road Runner/R3 Control Tables

Introduction SDK-32-1
Modifying CTABS from Software SDK-32-2
Controlling the Exposure on a Dalsa Line Scan Camera SDK-32-3
Changing Exposure Time in Double Pulse Mode on the Pulnix TM-9700 SDK-32-5
Controlling Exposure Time in the One Shot Mode on Kodak Cameras SDK-32-7
R2CTabPeek SDK-32-9
R2CTabPoke SDK-32-11
R2CTabRead SDK-32-12
R2CTabWrite SDK-32-13
R2CTabFill SDK-32-14

33 - Road Runner Quad Tables

Introduction SDK-33-1
R2QTabPeek SDK-33-2
R2QTabPoke SDK-33-3
R2QTabRead SDK-33-4
R2QTabWrite SDK-33-5
R2QTabFill SDK-33-6

34 - Road Runner/R3 Error Handling

Introduction SDK-34-1
R2ErrorXXXXXX SDK-34-2

35 - R64 Introduction

Overview SDK-35-1

36 - R64 System Open and Initialization

Introduction SDK-36-1
R64SysBoardFindByNum SDK-36-3
R64BrdOpen SDK-36-4
R64BrdOpenCam SDK-36-6
R64BrdCamSel SDK-36-8
R64BrdCamSetCur SDK-36-9

Table Of Contents

Version BitFlow, Inc. -TOC-11

R64BrdInquire SDK-36-10
R64BrdClose SDK-36-12
R64BrdAqTimeoutSet SDK-36-13
R64BrdAqSigGetCur SDK-36-14
R64BrdAqSigSetCur SDK-36-15
R64BrdCamGetFileName SDK-36-16
R64BrdCamGetCur SDK-36-17

37 - R64 Acquisition

Introduction SDK-37-1
R64AqSetup SDK-37-3
R64AqCommand SDK-37-5
R64AqCleanUp SDK-37-7
R64AqWaitDone SDK-37-8
R64AqProgress SDK-37-9
R64AqFrameSize SDK-37-10
R64AqReengage SDK-37-12
R64AqROISet SDK-37-13

38 - R64 Camera Configuration

Introduction SDK-38-1
R64CamOpen SDK-38-2
R64CamInquire SDK-38-4
R64CamClose SDK-38-6
R64CamAqTimeoutSet SDK-38-7

39 - R64 Interrupt Signals

Introduction SDK-39-1
R64SignalCreate SDK-39-3
R64SignalWait SDK-39-5
R64SignalNextWait SDK-39-7
R64SignalCancel SDK-39-8
R64SignalQueueSize SDK-39-9
R64SignalQueueClear SDK-39-10
R64SignalFree SDK-39-11

40 - R64 Quad Table Functions

Introduction SDK-40-1
R64QTabCreate SDK-40-2
R64QTabFree SDK-40-4
R64QTabEngage SDK-40-5
R64QTabChainLink SDK-40-6

-TOC-12 BitFlow, Inc. Version

R64QTabChainBreak SDK-40-7
R64QTabChainEngage SDK-40-8
R64QTabChainProgress SDK-40-9
R64ChainSIPEnable SDK-40-10
R64ChainSIPDisable SDK-40-11

41 - R64 Mid-Level Control Functions

Introduction SDK-41-1
R64ConAqCommand SDK-41-2
R64ConAqStatus SDK-41-3
R64ConAqMode SDK-41-4
R64ConInt SDK-41-5
R64ConDMACommand SDK-41-6
R64DMAProgress SDK-41-8
R64Shutdown SDK-41-9
R64ConIntModeSet SDK-41-10
R64ConIntModeGet SDK-41-11
R64LutPeek SDK-41-12
R64LutPoke SDK-41-13
R64ConGPOutSet SDK-41-14
R64ConGPOutGet SDK-41-15

42 - R64 Control Functions

Introduction SDK-42-1
R64ConVTrigModeSet SDK-42-2
R64ConVTrigModeGet SDK-42-5
R64ConHTrigModeSet SDK-42-7
R64ConHTrigModeGet SDK-42-9
R64ConSwTrig SDK-42-11
R64ConSwTrigStat SDK-42-12
R64ConHwTrigStat SDK-42-13
R64ConExTrigConnect SDK-42-14
R64ConExTrigStatus SDK-42-15
R64ConFreqSet SDK-42-16
R64ConGPOutSet SDK-42-17
R64ConGPOutGet SDK-42-18
R64LastLine SDK-42-19
R64ConExposureControlSet SDK-42-20
R64ConExposureControlGet SDK-42-23

43 - R64 Control Tables

Introduction SDK-43-1
Modifying CTABS from Software SDK-43-2
Example Code Showing Modifying The CTabs From Software SDK-43-3

Table Of Contents

Version BitFlow, Inc. -TOC-13

R64CTabPeek SDK-43-5
R64CTabPoke SDK-43-7
R64CTabRead SDK-43-8
R64CTabWrite SDK-43-9
R64CTabFill SDK-43-10

44 - R64 Dual Port Memory

Introduction SDK-44-1
R64DPMPeek SDK-44-2
R64DPMPoke SDK-44-3
R64DPMRead SDK-44-4
R64DPMWrite SDK-44-5
R64DPMFill SDK-44-6
R64DPMRamp SDK-44-7
R64DPMReadDMA SDK-44-8

45 - Camera Link Specification Serial Interface

Introduction SDK-45-1
BitFlow Specific Serial Functions SDK-45-1

clFlushPort SDK-45-3
clGetErrorText SDK-45-4
clGetNumPorts SDK-45-5
clGetNumBytesAvail SDK-45-6
clGetPortInfo SDK-45-7
clGetSupportedBaudRates SDK-45-8
clSerialClose SDK-45-9
clSerialInit SDK-45-10
clSerialRead - Deprecated as of CL 2.1 SDK-45-11
clSerialReadEx SDK-45-12
clSerialWrite SDK-45-13
clSetBaudRate SDK-45-14
clBFSerialSettings SDK-45-15
clBFSerialRead SDK-45-17
clBFSerialCancelRead SDK-45-18
clBFGetBaudRate SDK-45-19
clBFGetSerialRef SDK-45-20
clBFGetSerialRefFromBoardHandle SDK-45-21
clBFSerialInitFromBoardHandle SDK-45-22
clBFSerNumtFromBoardHandle SDK-45-23

46 - Display Functions

Introduction SDK-46-1
DispSurfCreate SDK-46-2
DispSurfGetBitmap SDK-46-3

-TOC-14 BitFlow, Inc. Version

DispSurfTop SDK-46-4
DispSurfBlit SDK-46-5
DispSurfChangeSize SDK-46-6
DispSurfGetLut SDK-46-7
DispSurfClose SDK-46-8
DispSurfIsOpen SDK-46-9
DispSurfOffset SDK-46-10
DispSurfSetWindow SDK-46-11
DispSurfGetWindow SDK-46-12
 DispSurfTitle SDK-46-13
DispSurfDisableClose SDK-46-14
DispSurfFormatBlit SDK-46-15
 DispSurfSetZoom SDK-46-16
 DispSurfGetZoom SDK-46-17

47 - BitFlow Common Functions Introduction

Overview SDK-47-1

48 - CoaXPress specific functions

Introduction SDK-48-1
CoaXPress Camera Control SDK-48-1
Example Usage SDK-48-1

BFCXPReadReg SDK-48-2
BFCXPWriteReg SDK-48-3
BFCXPReadData SDK-48-4
BFCXPWriteData SDK-48-6
BFCXPConfigureLinkSpeed SDK-48-7
BFCXPFindMasterLink SDK-48-8
BFCXPIsPowerUp SDK-48-9

49 - BitFlow Error Handling

Introduction SDK-49-1
BFErrorXXXXXX SDK-49-2
BFErrorShow SDK-49-4
BFErrorCheck SDK-49-5
BFErrorClearAll SDK-49-6
BFErrorGetLast SDK-49-7
BFErrorClearLast SDK-49-8
BFErrorDefaults SDK-49-9
BFErrorGetMes SDK-49-10

Table Of Contents

Version BitFlow, Inc. -TOC-15

50 - BitFlow Register Access

Introduction SDK-50-1
BFRegPeek SDK-50-2
BFRegPeekWait SDK-50-3
BFRegPoke SDK-50-4
BFRegRMW SDK-50-5
BFRegName SDK-50-6
BFRegFlags SDK-50-7
BFRegShift SDK-50-8
BFRegMask SDK-50-9
BFRegObjectId SDK-50-10
BFRegSupported SDK-50-11
BFRegAddr SDK-50-12

51 - BitFlow Version Control Functions

Introduction SDK-51-1
BFDriverVersion, R2DVersion, BFDVersion, BFErVersion, DispSurfVersion, DDrawSurfVer-
sion, BitDirectSurfVersion, CiDVersion, R64DVersion SDK-51-2
BFBuildNumber SDK-51-3
BFReadHWRevision SDK-51-4
BFReadFWRevision SDK-51-5

52 - BitFlow Miscellaneous Functions

Introduction SDK-52-1
BFQTabModeRequest SDK-52-2
BFChainSIPEnable SDK-52-4
BFChainSIPDisable SDK-52-5
BFStructItemGet SDK-52-6
BFStructItemSet SDK-52-8
BFTick SDK-52-9
BFTickRate SDK-52-10
BFTickDelta SDK-52-11
BFFine SDK-52-12
BFFineRate SDK-52-13
BFFineDelta SDK-52-14
BFFineWait SDK-52-15
BFDrvReady SDK-52-16
BFIsCL SDK-52-17
BFIsR3 SDK-52-18
BFIsR2 SDK-52-19
BFIsRv SDK-52-20
BFIsR64Board SDK-52-21
BFIsR64 SDK-52-22
BFIsPMC SDK-52-23
BFIsPLDA SDK-52-24

-TOC-16 BitFlow, Inc. Version

BFIsKbn SDK-52-25
BFIsKbn4 SDK-52-26
BFIsKbn2 SDK-52-27
BFIsKbnBase SDK-52-28
BFIsKbnFull SDK-52-29
BFIsKbnCXP SDK-52-30
BFIsKbnCXP1 SDK-52-31
BFIsKbnCXP2 SDK-52-32
BFIsKbnCXP4 SDK-52-33
BFIsNeonBase SDK-52-34
BFIsNeonD SDK-52-35
BFIsNeonQ SDK-52-36
BFIsNeonDif SDK-52-37
BFIsAlta SDK-52-38
BFIsAlta1 SDK-52-39
BFIsAlta2 SDK-52-40
BFIsAlta4 SDK-52-41
BFIsSlave SDK-52-42
BFIsAxn SDK-52-43
BFIsAxn1xE SDK-52-44
BFIsAxn2xE SDK-52-45
BFIsAxn2xB SDK-52-46
BFIsAxn4xB SDK-52-47
BFIsMaster SDK-52-48
BFIsAltaAN SDK-52-49
BFIsAltaCO SDK-52-50
BFIsAltaYPC SDK-52-51
BFIsEncDiv SDK-52-52
BFIsNTG SDK-52-53
BFIsGn2 SDK-52-54
BFIsCtn SDK-52-55
BFIsCXP SDK-52-56
BFIsCXP2 SDK-52-57
BFIsCXP4 SDK-52-58
BFIsAon SDK-52-59
BFIsAonCXP1 SDK-52-60
BFIsAxnII SDK-52-61
BFIsCtnII SDK-52-62
BFIsClx SDK-52-63
BFIsClxCXP2 SDK-52-64
BFIsClxCXP4 SDK-52-65
BFIsSynthetic SDK-52-66
BFHasSerialPort SDK-52-67
BFCurrentTimeGet SDK-52-68
BFTimeStructInit SDK-52-69
BFHiResTimeStampInit SDK-52-70
BFHiResTimeStamp SDK-52-71
BFHiResTimeStampEx SDK-52-72
DoBrdOpenDialog SDK-52-73
WaitDialogOpen SDK-52-75

Table Of Contents

Version BitFlow, Inc. -TOC-17

WaitDialogClose SDK-52-76
WaitDialogClose SDK-52-77
ChoiceDialog SDK-52-78
BFGetCurrentFimwareName SDK-52-79
BFGetVFGNum SDK-52-80
BFReadSerialNumberString SDK-52-81
BFOutputDebugString SDK-52-82

53 - BitFlow Disk I/O Functions

Introduction SDK-53-1
BFIOWriteSingle SDK-53-2
BFIOWriteMultiple SDK-53-5
BFIOReadSingle SDK-53-8
BFIOReadMultiple SDK-53-10
BFIOReadParameters SDK-53-12
BFIOSaveDlg SDK-53-13
BFIOOpenDlg SDK-53-14
BFIOErrorShow SDK-53-15
BFIOErrorGetMes SDK-53-16
BFIOWriteSingleEx SDK-53-17
BFIOReadSingleEx SDK-53-20
BFIOReadParametersEx SDK-53-22
BFIOMakeExParams SDK-53-24
BFIOFreeExParams SDK-53-25
BFIOClearExParams SDK-53-26

54 - BitFlow Types

List of Defined Types SDK-54-1

-TOC-18 BitFlow, Inc. Version

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-P-1

Preface

Chapter P

P.1 Purpose

This Software Reference Manual is intended for anyone using the BitFlow Software Devel-
opment Kit (BitFlow SDK). This manual is primarily meant as a reference manual for users
writing their own applications. It is not intended to be a users’ manual for the utilities and
examples provided with the BitFlow SDK.

This preface explains the various layers and Application Programming Interfaces (APIs) of
the BitFlow SDK. Please read the following section to determine which API best suits your
needs.

The BitFlow SDK was first release in 1996 and has been updated continuously every since.
While the main purpose of the API, getting images into user memory, has not changed
over the years, the features and ease of use has evolved considerably. In addition, the
SDK originally only support one product family, not is supports seven. BitFlow has made
every effort to keep backwards compatible with each new release, while adding new
powerful features and support for new product families. This has been a challenge, and
might prompt one to ask why bother, as the API might seem large and unwieldy. The rea-
son is that most of our customers build our product into machines that need to be sup-
port for many many years. Our goal is to support these long term customers, while
adding features that will convince new customers are easy to use and robust enough for
long term industrial use.

The History of the BitFlow APIs BitFlow SDK

SDK-P-2 BitFlow, Inc. Version G.8

P.2 The History of the BitFlow APIs

The BitFlow SDK originally had two APIs, the high level R2 API and the low level BF
API. This supported our one product family, the Road Runner. When we released our
Raven family the architecture was substantially different and required its own API, so
the Rv API was released at the same time. The R3 family came next, but it was identical
in architecture to the Road Runner so no new API was needed. Soon we built a new
API on top of these two call the Ci API, which would work with any board installed in
the system. The idea was to let customers write one application using the Ci API, and
be able to seamlessly move back and forth between product families. We also added
this API with an eye to the future, promising support for all new product families
under the Ci API.

When the R64 family was released, it again has a very different architecture, so a new
API was added as well, the R64 API. It became clear at this point the customers did
not and should not care about product family when writing their applications, so we
began de-emphasizing the individual APIs (R3, Rv and R64), and started promoting
the Ci API exclusively.

At the same time we realized the many of our customers were writing the same type
of applications using our functions. We decided to save the customers the trouble, by
encapsulating the most common functions in a new buffer management API, the Bi
API. This new API supported both sequence capture and circular buffer management
with a few simple function calls. Since the Bi API was built on the Ci API, it was auto-
matically board family independent.

As of the writing of this manual, we are on our 6th full point release of the SDK, and
some of the older product families are going into end-of-life status. Supported APIs
for these older boards begins to make less sense. For this reason, we are encouraging
all new applications to be built on the Ci and/or Bi APIs . Of course, for low level
access, the BF API will always be there. While all of the older APIs are documented in
this manual, future support is not guaranteed. The Bi/Ci/BF APIs offer all the function-
ality provided by these older APIs, plus a lot more.

Preface The APIs

Version G.8 BitFlow, Inc. SDK-P-3

P.3 The APIs

This SDK works with all of BitFlow’s current camera interface products: the Road Run-
ner, the R3, the R64, the Karbon, the Neon and the Alta.. The SDK consists of six APIs:

Road Runner (prefix R2) - Road Runner/R3 family
R64 (prefix R64) - R64, Karbon, Neon and Alta families
Gen 2 (prefix Gn2) - Aon, Axion and Cyton families
Camera Interface (prefix Ci) - All families
Buffer Management, BufIn (prefix Bi) - All families
Low level access (prefix BF) - All families

The Road Runner and the R3 are so similar that they share the same API. The R64,
R64e, Karbon, Neon and Alta are all based on the original R64 architecture so they
can all be programmed via the R64 API. The Gen2 API is covers the latest families:
Aon, Axion and Cyton. There are two generic high level APIs, called the Camera Inter-
face API (Ci functions) and BufIn (Bi functions), which are designed to work with any of
the BitFlow products. Applications calling the Ci or Bi layer need not worry about
which type of board is installed.

At the lowest level there is a common layer, called the BitFlow API (BF functions). Most
applications can be written using only the high level APIs, however, occasionally low
level access is needed, thus the BF API is available. The Figure P-1 diagram illustrates
the organization of these layers.

Figure P-1 BitFlow SDK Layers

The concept is that each layer calls the layer below it and that some API works with
one family of boards while other APIs work with all boards. However, the functionality
available with each API is different. For example, if a Neon is installed in a system: Bi,
Ci, R64 and BF APIs can all be used, but the R2 API can not (although there would be
no need for this API). Writing a complete application using only the BF API would be
extremely difficult, its role is mainly as a low level foundation for the other functions to

Ci API

R2 API Gn2 APIR64 API Rx API
(future)

BF API

BufIn APIApplication

The APIs BitFlow SDK

SDK-P-4 BitFlow, Inc. Version G.8

build upon. If a Raven is installed, you could use either the R64 API (not recom-
mended) or the Ci API, the functionality is roughly equivalent. The Bi API can be used
to add buffer management. However, an application written with the R64 API will only
work when Karbons or Neons are installed, but an application written using the Ci or
Bi APIs will work with any family of board in the system, including families released in
the future.

In addition, the R2, R64 and Gn2 layers are broken into separate tiers. Most applica-
tions can be written using only the highest level functions. However a mid-level func-
tion may be required to make a small tweak to the board setup. The lowest level is
basically used for direct access to the memory and registers on the board.

Preface Which API Should I Use?

Version G.8 BitFlow, Inc. SDK-P-5

P.4 Which API Should I Use?

As mention in previous section, all new applications should be written with the Ci API
or the Bi API. We are discouraging use of the R2, R64 and Gn2 APIs, and support of
these APIs is not guaranteed in future releases. The BF API can be used if low level
access is required.

The following table should help you choose the correct API for your application.

Application API SDK Example Application

The application only needs
to acquire into one buffer at
a time.

Ci CiView - live video display
application

CiSimple - Super simple con-
sole application

The application will need to
acquire into multiple buffers
continuously.

Bi - Circular
functions

Circ -Continuous circular buf-
fer acquisition and display
application

Circular.c - Simple circular
acquisition console applica-
tion

The application needs to
acquire sequences of images
to memory.

Bi - Sequence
functions

BiFlow - Sequence capture/
display/save appliction

Sequence.c - Simple
sequence capture example

The application needs only
low level access to the
board’s registers.

BF

Organization BitFlow SDK

SDK-P-6 BitFlow, Inc. Version G.8

P.5 Organization

The manual is partitioned into eight books corresponding to the major APIs as fol-
lows:

BufIn functions (Bi)
Camera Interface Functions (Ci)
Road Runner and R3 Functions (R2)
R64 functions (R64)
Camera Link Specification Serial Port Functions (cl)
Display Functions (Disp)
BitFlow Functions(BF)

All of the books are covered by the same Table of Contents at the beginning of the
manual and the same Index at the end.

Note: The Gen 2 functions are not documented. While the Gn2 API exists and could
potentially be used, there is no added functionality over the Ci API. Using the Gn2 API
also restricts usage to only Gen 2 boards.

Preface Support Services

Version G.8 BitFlow, Inc. SDK-P-7

P.6 Support Services

BitFlow provides both sales and technical support for the all of our hardware and soft-
ware products.

P.6.1 Technical Support

Our web site is www.bitflow.com.

Technical support is available at 781-932-2900 from 9:00 AM to 6:00 PM Eastern Stan-
dard Time, Monday through Friday.

For technical support by email (support@bitflow.com) please include the following:

Product name
Camera type and mode being used
Software revision number
Computer CPU type, PCI chipset, bus speed
Operating system
Example code (if applicable)

P.6.2 Sales Support

Contact your local BitFlow Sales Representative, Dealer, or Distributor for information
about how BitFlow can help you solve your most demanding camera interfacing
problems. Refer to the BitFlow, Inc. website (www.bitflow.com) for a list of sales repre-
sentatives.

Support Services BitFlow SDK

SDK-P-8 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-1-1

 SDK Introduction

Chapter 1

1.1 Overview

The BitFlow Software Development Kit (SDK) consists of a kernel driver, Dynamic Link
Libraries (DLLs), example applications with source code and utilities for all of BitFlow's
current frame grabbers. The applications included are quite powerful and can be used
“out of the box” to acquire and save images and sequences. The applications can also be
used to setup and test cameras, to modify a camera's modes and to create corresponding
camera configuration files. However, the real purpose of the SDK is to provide a platform
for the customer to quickly and easily build their imaging application. The goal of our
Application Programming Interface (API) is make control over the camera, image acquisi-
tion, image buffer management and image storage simple and painless. At the same
time, the goal is to use as little of the computers resources as possible. BitFlow has gone
through enormous efforts to anticipate customer needs and incorporate them into this
SDK.

The boards are accessed through two main APIs: Bi (BufIn) and Ci functions. The BufIn API
is a very high level buffer management layer, and works with all boards. The BufIn API is
accessible from C, C++ and C#. The Ci API is also board independent and lets an applica-
tion work with which ever board is plugged into the system, no recompiling is required
when the board type changes. There are also two legacy APIs, R2 and R64. These APIs
only allow access to their corresponding family, and it is recommended that these func-
tions not be used. Finally there is a low level hardware access API, BF, which is mainly
used for direct control of memory and registers.

Camera Configuration Files BitFlow SDK

SDK-1-2 BitFlow, Inc. Version G.8

1.2 Camera Configuration Files

All BitFlow frame grabbers are initialized with a camera configuration file when the
board is first opened in software (via CiBrdOpen, BiBrdOpen, etc.). The camera con-
figuration file sets the board up for interfacing with a particular camera. The BitFlow
SDK comes with over a 1000 camera files. There were generally constructed when Bit-
Flow’s engineers interfaced and tested the camera directly in the BitFlow labs. If a
camera configuration file for your camera does not exists in the SDK, please contact
BitFlow customer support and they will get you the file that you need.

There are a number of different ways to specify which camera configuration file
should be used. These different methods are explained in the following sections.
However, the simplest is to run the utility SysReg and “attach” a camera file to a partic-
ular board in your system. Once this is done, all BitFlow applications will configure the
board to use this file.

Each family of BitFlow frame grabber family has its own camera configuration file for-
mat. The formats are as follows:

The Axion-CL - this family uses XML camera files with the extension "bfml"
The Aon-CXP/Cyton-CXP - this family uses XML camera files with the extension

"bfml"
The Karbon-CXP - this family uses files with the extension "kcxp"
The Alta - this family uses files with the extension "anlg"
The R64/Karbon/Neon - this family uses files with the extension ".r64". All models

of R64 use this camera configuration file format.
The Road Runner/R3 Camera Link models - this family uses files with the extension

".rcl".
The Road Runner/R3 Differential models - this family uses files with the extension

".cam". There is a camera configuration cross reference located in the file "Bit-
Flow SDK X.XX\Docs\Camera File List.txt".

Note that the Cyton camera configuration files are XML files. This is a change from all
previous BitFlow camera configuration files, which were a proprietary format. These
BFML files can be edited in any text editor. Their schema is documented on the down-
load page of BitFlow's web site. However, since SDK 6.30, the SDK comes with a ded-
icated BFML file editor called CamML, which makes modifying these files very easy.

SDK Introduction Specifying Camera Configuration Files

Version G.8 BitFlow, Inc. SDK-1-3

1.3 Specifying Camera Configuration Files

A camera configuration file is used to initialize a board to work with a specific camera
in a specific mode. When a board is opened and initialized, a camera configuration
file must be specified. There area a few different methods to specify a camera config-
uration file. The following subsections enumerate these methods.

1.3.1 Camera Configuration File Specified Via SysReg

This is by far the most common method to specify a camera configuration file. Each
board installed in the system is listed in SysReg. A camera configuration file can be
“attached” to each board in SysReg’s Board Details dialog. When a board is opened
via CiBrdOpen or BiBrdOpen, the camera file specified in SysReg is used to configure
the board.

1.3.2 Specifying Multiple Camera Configuration Files in SysReg

Multiple camera configuration files can be “attached” to a single board in SysReg. It is
then possible to switch between which camera file the board is currently initialized to
via the functions CIBrdCamSel or BiCamSel. The current configuration is selected
using an index which corresponds to the list of camera file specified for the board in
SysReg.

1.3.3 Camera Configuration File Specified Via a Board Open Function

The camera configuration file can be specified in the board open function. There are a
few function that support this method:

CiBrdOpenCam
BiBrdOpenCam
BiBrdOpenCamEx

When this method is used, the camera configuration file specified in SysReg is
ignored. However, it is still suggested that a default camera file be specified in SysReg
as many applications still rely on this method.

1.3.4 Specifying the Camera Configuration File After the Board is Opened

Once the board is opened and initialized, the board can be reconfigured with a differ-
ent camera file by using the CiCamOpen/BiBrdOpen and CiBrdCamSetCur/BiBrdSet-
Cur. These functions allow for full control of which camera configuration file the board
is currently initialized to. The configuration file can be change as often as needed.
However, the camera configuration can only be change when acquisition is not set up.

Specifying Camera Configuration Files BitFlow SDK

SDK-1-4 BitFlow, Inc. Version G.8

1.3.5 Specifying a Default Camera Configuration File in the Registry

It is possible to specify a default camera configuration file in the registry by creating
the following registry value:

Got to the key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\BitFlow

Create a new string value:

Value Name = DefaultR64File
Value Data = CameraFileName.r64

The camera file set above in the registry is only used if the camera configuration file is
not specified in SysReg. If there is camera file specified in SysReg, it will be used.

The Value Name above is different depending on the major family type of the board.
See Table 1-1 for the Value Name needed for each family. More than one entry can be
used to support multiple families on the same PC.

Table 1-1 Registry Value Name for Each Family

Models Value Name

R64, Karbon, Neon DefaultR64File

Alta DefaultAnlgFile

Road Runner/R3 Differential DefaultCamFile

Road Runner/R3 Camera Link DefaultRclFile

Karbon CXP DefaultKcxpFile

Cyton CXP DefaultCtnFile

Aon CXP DefaultAonFile

Axion CL DefaultAxnFile

Claxon CXP DefaultClxFile

SDK Introduction SDK Utilities

Version G.8 BitFlow, Inc. SDK-1-5

1.4 SDK Utilities

The BitFlow SDK includes a number of utilities to facilitate the development and
deployment of BitFlow applications. The following table briefly lists the more import-
ant utilities shipped with the SDK.

Table 1-2 BitFlow SDK Utilities

Name Purpose

AxionStats Tool for debugging Camera Link interfaces (Gen 2 only)

BFDX Low level hardware debugging tool

BFCom Communications terminal for sending/receiving serial
commands from Camera Link cameras

BFLog Debugging and logging utiltiy

BitFlowCapture Capture sequence of image to host memory (and save
them offline to disk)

BitFlowPreview Live video preview (also save captured images to disk)

CamEd Edit *.r64 camera configuration files

CamML Edit *.bfml camera configuration files

CamVert Low level binary format camera configuration file editor

CXPRegTool Command line tool to send/receive commands from CoaX-
Press cameras

CytonStats Tool for debugging CoaXPress interfaces

PCIWalk Enumerates BitFlow boards installed in the system along
with PCI space details

SysReg Set system wide settings, Attach camera configuration files
to each board

RegTool Command line tool to read/write board registers

VerCheck Collect system information that can be useful in debugging
system issues.

Ximilon Camera configuration utility for GenICam based cameras
(mainly CoaXPress cameras).

SDK Example Applications BitFlow SDK

SDK-1-6 BitFlow, Inc. Version G.8

1.5 SDK Example Applications

The BitFlow SDK includes a number of example applications that can be used to help
understand the how the BitFlow API works. Source code for all of these applications is
included. Some examples are capable on there own to be used in basic applications.
Many of the examples are console base (i.e. command line applications), these make
it very easy to understand how to work with the BitFlow API.

Examples are located in the “\BitFlow SDK X.XX\Examples” folder. Almost every
aspect of the BitFlow API is illustrated in at least one example.

SDK Introduction Support for Other Languages

Version G.8 BitFlow, Inc. SDK-1-7

1.6 Support for Other Languages

The BitFlow SDK is primarily written for C/C++ applications. However, it supports
other environments as well. The follow are supported in one way or another:

C++ - Any C API can be called from with a C++ class. However, the BitFlow SDK
also offers a set of C++ classes which offer most of the high level functionality
of the C API. There are number of C++ examples included in the SDK and the
documentation is available on our web side.

C# - A separate .NET interface is available for download from our web site. This,
like our C++ interface, offers most of the high level functionality of our C API.
Documentation and examples are also provided in the .NET download.

VB.NET - The .NET interface also supports VB.NET.

Support for Other Languages BitFlow SDK

SDK-1-8 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-1-1

 BufIn Introduction

Chapter 1

1.1 Overview

The primary purpose of the Buffer Interface API, (BufIn) is to provide an easier means of
using the advanced acquisition functionality of BitFlow’s products. The BufIn API simpli-
fies the programming effort by significantly reducing the number of function calls needed
to develop two of the most fundamental components of an imaging application,
sequence capture and circular buffer management.

A developer that is simply capturing a predetermined sequence of frames or lines relative
to an event trigger, and is not required to process or view the image data in real-time,
may want to use sequence capture within their application. For sequence capture, an
array of buffers are allocated and the buffers are then filled with image data automatically,
starting at the first buffer and ending at the last buffer. The user has the ability to specify
the start and end buffers with the only limitation on the number of buffers allocated,
being the amount of memory installed in the computer system. Once the sequence of
images are in memory, they can be viewed or saved to disk.

A developer requiring real-time processing of image data may choose to use circular buf-
fer management. For circular buffer management, an array of buffers is allocated and the
buffers are filled with image data starting from the first buffer, filling the rest of the buffers
in a round- robin fashion. When the end of the array is reached, the first buffer will be
overwritten with new data. Unlike sequence management, where acquisition is stopped
after the last buffer is filled, circular management will continue to acquire image data and
overwrite previous data, until the user specifies acquisition to end. The idea behind circu-
lar buffer management is that a buffer can be processed by the CPU while BitFlow’s board
acquires into one of the other buffers. This separation between acquisition and process-
ing used by BufIn is helpful in situations where the processing time is not constant. Buffer
processing time can vary considerably, as long as the average processing time is equal to
or less than the acquisition time, the number of buffers will not need to be increased to
keep acquisition from catching up to the buffer being processed. If the average process-
ing time where to increase for any reason, (i.e. an increased swing of processing times of
the buffers), more buffers would need to be required to keep acquisition from catching
up to the buffer being processed. In the ideal situation, enough buffers will be allocated
to keep the acquisition of the image data from catching up to the buffer being processed,
but this is not always the case. Therefore, BufIn provides a means of marking buffers so
that they will not be overwritten. Similarly to sequence management, the buffers can be
viewed or saved to disk as a BMP, TIFF, AVI or RAW file formats.

The BufIn API supports every model of every BitFlow product and will also support future
BitFlow camera interface boards.

The BufIn API can support any size image that is supported by the particular BitFlow inter-
face board. The BufIn API supports 8, 10, 12, 24, 32, 36, 42 and 48-bit data formats and
any image formats that are supported by the camera interface card (two taps, reverse
scan, etc.).

Overview BitFlow SDK

SDK-1-2 BitFlow, Inc. Version G.8

The BufIn API supports it’s own simplified error handling and viewing functions. The
API also provides the ability to internally handle errors such as FIFO overflows, buffers
being overwritten, and hardware exceptions.

The internal timeout values that Bufin uses comes from the camera file for non-trig-
gered modes such as free run. For any triggered modes, (one-shot, start/stop), the
timeout value used is INFINITE. Using INFINTE as a timeout value causes the acquisi-
tion engine to wait forever for a frame to be acquired. In non-triggered modes the
timeout value can be adjusted by adjusting the timeout value in the camera file.

Sequence capture and circular buffer management applications can be developed
solely with the BufIn API. The API provides all functions needed to open the board,
setup acquisition, control acquisition, handle errors, clean up and close the board. No
additional BitFlow function calls should be needed. Examples in the SDK have been
provided to show how to use the BufIn API for sequence capture and circular buffer
management. For comparison purposes, the sequence capture example BiFlow uses
the BufIn API where the example application Flow dose not use the BufIn API. For
examples of the circular management functions refer to example applications Circ
and BiProcess.

A normal program would use the following sequence of functions for sequence cap-
ture:

Bd Board;
BIBA BufArray;

// Open the first R64 family board in the system.
BiBrdOpen(BiTypeR64, 0, hBoard);

// Allocate 25 buffers, use camera file information for
// image size and bit depth.
BiBufferAllocCam(hBoard, &BufArray, 25);

// Setup sequence acquisition using Host Qtabs and
// DMA Engine J.
BiSeqAqSetup(hBoard, &BufArray, BiAqEngJ);

// Start image acquisition asyncronously.
BiSeqControl(hBoard, &BufArray, BISTART, BiAsync);

// Wait for 5 seconds for acquisition to complete.
// (This can be placed in a separate thread that will
// wake up when acquistion is complete.)
BiSeqWaitDone(hBoard, &BufArray, 5000);

// At this point the image data is in memory. Now it
// can be viewed, processed and/or saved to disk.

// Save the sequence of images starting a 5 through 15,
// to disk as a TIFF. Call the files SeqDemo.
BiDiskBufWrite(hBoard, &BufArray, BITIF, 5, 10, SeqDemo, 0);

BufIn Introduction Overview

Version G.8 BitFlow, Inc. SDK-1-3

// Clean up sequence acquisiton.
BiSeqCleanUp(hBoard, &BufArray);

// Free buffer memory that has been allocated.
BiBufferFree(hBoard, &BufArray);

// Close the board
BiBrdClose(hBoard);

A normal program would use the following sequence of functions for circular capture:

Bd Board;
BIBA BufArray;

// Open the first R64 family in the system.
BiBrdOpen(BiTypeR64, 0, hBoard);

// Allocate 25 buffers, use camera file information for
// image size and bit depth.
BiBufferAllocCam(hBoard, &BufArray, 25);

// Setup circular acquisition using Host Qtabs and
// DMA Engine J.
BiCircAqSetup(hBoard, &BufArray, BiAqEngJ);

// Start image acquisition asyncronously.
BiSeqControl(hBoard, &BufArray, BISTART, BiAsync);
// Loop here until and display the image data to
// the screen, until acquisition is stopped.
while(ACQUISITION IS STILL RUNNING)
{

BiCirWaitDoneFrame(hBoard, &BufArray, INFINITE,
&CirHandle);

// DISPLAY IMAGE DATA.
}

// Save all images to disk as BMP. Call the files CircDemo.
BiDiskBufWrite(hBoard, &BufArray, BIBMP, 0, 25, CirDemo, 0);

// Acquisiton has been stopped.
// Clean up circular acquisiton.
BiSeqCleanUp(hBoard, &BufArray);

// Free buffer memory that has been allocated.
BiBufferFree(hBoard, &BufArray);

// Close the board

Overview BitFlow SDK

SDK-1-4 BitFlow, Inc. Version G.8

BiBrdClose(hBoard);

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-2-1

BufIn Board Functions

Chapter 2

2.1 Introduction

The functions described in this chapter are quite simple. The idea being to open the
board for acquisition. When acquisition is complete, close the board, thus cleaning up all
resources allocated in the open function.

A normal program would uses these functions, in this order:

BiBrdOpen

// acquisition and processing

BiBrdClose

If you want to open two boards, the flow would be as follows:

BiBrdOpen // open board 0
BiBrdOpen // open board 1

// acquisition and processing

BiBrdClose // close board 0
BiBrdClose // close board 1

The handle return by the function BiBrdOpen is used in all subsequent function calls. If
you are using two or more boards, open each board and store each handle in a separate
variable. Whenever you want to talk to board X, pass the handle for board X to the func-
tion.

There is no need to call BiBrdOpen more than once per process per board. Because this
function takes a fair amount of CPU time and allocated resources, we discourage users
from repeatedly calling BiBrdOpen and the BiBrdClose in a loop. We recommend open-
ing the board once, when the application starts, and closing it once when the application
exits. If you are using a program that has multiple threads, open the board once in the first
main thread and then pass the board handle to every thread that is subsequently created.
You must call BiBrdClose for every board that is open with BiBrdOpen. You should also
call BiBrdClose in the same thread that BiBrdOpen was called.

BiBrdOpen BitFlow SDK

SDK-2-2 BitFlow, Inc. Version G.8

2.2 BiBrdOpen

Prototype BIRC BiBrdOpen(BFU32 BrdType, BFU32 BrdNumber, Bd *pBrdHandle)

Description Opens a board for access. This function must return successfully before any other BI
functions are called.

Parameters BrdType

Type of board to open. The types of boards to open are as follows:

BiTypeR2 - RoadRunner or R3 type board.
BiTypeR64 - R64, R64e, Karbon, Neon or Alta type board.
BiTypeGn2 - Aon, Axion, Cyton or Claxon type board.
BiTypeAny - Opens boards by number, ignoring the board type.

BrdNumber

Specifies the board number to open. Boards are numbered sequentially as they are
found when the system boots. A given board will be the same number every time the
system boots as long as the number of boards is the same and the boards are in the
same PCI slots.

*pBrdHandle

A pointer to the board handle after successfully opening a board. This handle is used
for all further accesses to the newly opened board.

Returns

Comments This function opens the board for all accesses. The board must be opened before any
other functions can be called. When you are finished accessing the board you must
call BiBrdClose, before exiting your process. Failure to call BiBrdClose will result in
incorrect board open counts used by the driver.

When using BiTypeAny for BrdType, the board is opened only using the board num-
ber. For instance, if board 0 is a R2, board 1 is a R3 and board 2 is an R64 and the fol-
lowing function calls are made with the following results:

BI_OK A board was found and opened.

BI_ERROR_BOARD_NOT_
FOUND

There is no board with this number.

BI_ERROR_UNKNOWN_TYPE The board type specified by BrdType is
unknown.

BI_ERROR_SYSTEM A error occurred while searching for the
board information in the registry.

BI_ERROR_OPENING Board was found but could not be opened.

BufIn Board Functions BiBrdOpen

Version G.8 BitFlow, Inc. SDK-2-3

BiBrdOpen(BiTypeAny, 0, &hBoard); // Opens the R2
BiBrdOpen(BiTypeAny, 1, &hBoard); // Opens the R3
BiBrdOpen(BiTypeAny, 2, &hBoard); // Opens the R64

If BiBrdOpen fails, you cannot access the board, and you do not need to call BiBrd-
Close.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board. You should only
call this function once per process per board and in only one thread. You can call this
function again in the same process but you must call BiBrdClose first.

BiBrdOpenEx BitFlow SDK

SDK-2-4 BitFlow, Inc. Version G.8

2.3 BiBrdOpenEx

Prototype BIRC BiBrdOpenEx(BFU32 BrdType, BFU32 BrdNumber, Bd *pBrdHandle, BFU32
Options)

Description Opens a board for access. This function must return successfully before any other BI
functions are called.

Parameters BrdType

Type of board to open. The types of boards to open are as follows:

BiTypeR2 - RoadRunner or R3 type board.
BiTypeR64 - R64, R64e, Karbon, Neon or Alta type board.
BiTypeGn2 - Aon, Axion, Cyton or Claxon type board.
BiTypeAny - Opens boards by number, ignoring the board type.

BrdNumber

Specifies the board number to open. Boards are numbered sequentially as they are
found when the system boots. A given board will be the same number every time the
system boots as long as the number of boards is the same and the boards are in the
same PCI slots.

*pBrdHandle

A pointer to the board handle after successfully opening a board. This handle is used
for all further accesses to the newly opened board.

*Options

Special board open options. Can be one or more of the following:

BFSysInitialize - Initialize the system.
BFSysExclusive - If not already open, open exclusively.
BFSysNoIntThread - Do not activate interrupt thread.
BFSysNoCameraOpen - Do not open any camera configurations.
BFSysNoAlreadyOpenMess - Supress already open warning message.
BFSysNoOpenErrorMess - Supress all error popups in open function.
BFSysSecondProcessOpen - Allow the board to be opened twice in the

same process (includes some of the above modes).
BFSysAllowTwoOpens - Allow the board to be opened twic ein the same

process, and initialized.
BFSysNoPoCLChange - This flag forces the system to leave the PoCL sys-

tem as is (don't change its state).
BFSysPoCLUpOnly - This flag will power up PoCL if it is off, but won't turn it

off, if it is on.
BFSysSerialPortOpen - used when opening the serial port, included some

of the above flags
BFSysNoCXPInit - Don't initialize the CXP subsystem

BufIn Board Functions BiBrdOpenEx

Version G.8 BitFlow, Inc. SDK-2-5

BFSysNoGenTLInit - Don't use GenTL camera control during board initial-
ization.

BFSysNoIOReset - Do not reset I/O outputs before setting them as per con-
figuration file

Returns

Comments This function works exactly like BiBrdOpen except that it provides for more options
for opening the board. The options provided here are the exact same as the options
support for the function CiBrdOpen.

When BiBrdOpen is used, the default options are used. In this case BiBrdOpen opens
the board with the option BFSysInitialize. When using BiBrdOpenEx, it is recom-
mend that you use at least the option BFSysInitialize as well as other options
as needed.

BI_OK A board was found and opened.

BI_ERROR_BOARD_NOT_
FOUND

There is no board with this number.

BI_ERROR_UNKNOWN_TYPE The board type specified by BrdType is
unknown.

BI_ERROR_SYSTEM A error occurred while searching for the
board information in the registry.

BI_ERROR_OPENING Board was found but could not be opened.

BiBrdOpenCam BitFlow SDK

SDK-2-6 BitFlow, Inc. Version G.8

2.4 BiBrdOpenCam

Prototype BIRC BiBrdOpenCam(BFU32 BrdType, BFU32 BrdNumber, Bd *pBrdHandle, PBF-
CHAR ForceCamFile)

Description Opens a board for access and opens the given camera file. This function must return
successfully before any other BI functions are called.

Parameters BrdType

Type of board to open. The types of boards to open are as follows:

BiTypeR2 - RoadRunner or R3 type board.
BiTypeR64 - R64, R64e, Karbon, Neon or Alta type board.
BiTypeGn2 - Aon, Axion, Cyton or Claxon type board.
BiTypeAny - Opens boards by number, ignoring the board type.

BrdNumber

Specifies the board number to open. Boards are numbered sequentially as they are
found when the system boots. A given board will be the same number every time the
system boots as long as the number of boards is the same and the boards are in the
same PCI slots.

*pBrdHandle

A pointer to the board handle after successfully opening a board. This handle is used
for all further accesses to the newly opened board.

ForceCamFile

The camera file to open. The camera file should include the name and the file exten-
sion. If only the file name and extension are given, the camera configuration path is
searched for the camera file. (The camera configuration path by default is the Config
folder under the SDK root.) If the full path is given, the camera file will try and be
opened from that location.

Returns

BI_OK A board was found and opened.

BI_ERROR_BOARD_NOT_
FOUND

There is no board with this number.

BI_ERROR_UNKNOWN_TYPE The board type specified by BrdType is
unknown.

BI_ERROR_SYSTEM A error occurred while searching for the
board information in the registry.

BI_ERROR_OPENING Board was found but could not be opened.

BufIn Board Functions BiBrdOpenCam

Version G.8 BitFlow, Inc. SDK-2-7

Comments This function opens the board for all accesses. The board must be opened before any
other functions can be called. When you are finished accessing the board you must
call BiBrdClose, before exiting your process. Failure to call BiBrdClose will result in
incorrect board open counts used by the driver.

When using BiTypeAny for BrdType, the board is opened only using the board num-
ber. For instance, if board 0 is a R2, board 1 is a R3 and board 2 is an R64 and the fol-
lowing function calls are made with the following results:

// Opens the R2
R2BiBrdOpen(BiTypeAny, 0, &hBoard, “SomeCamFile.cam”);

// Opens the R3
BiBrdOpen(BiTypeAny, 1, &hBoard, “SomeCamFile.rvc”);

// Opens the R64
BiBrdOpen(BiTypeAny, 2, &hBoard, “SomeCamFile.r64”);

If BiBrdOpenCam fails, you cannot access the board, and you do not need to call
BiBrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board. You should only
call this function once per process per board and in only one thread. You can call this
function again in the same process but you must call BiBrdClose first.

BiBrdOpenCamEx BitFlow SDK

SDK-2-8 BitFlow, Inc. Version G.8

2.5 BiBrdOpenCamEx

Prototype BIRC BiBrdOpenCamEx(BFU32 BrdType, BFU32 BrdNumber, Bd *pBrdHandle,
PBFCHAR ForceCamFile, BFU32 Options)

Description Opens a board for access and opens the given camera file. This function must return
successfully before any other BI functions are called. This open function supports a
number of options.

Parameters BrdType

Type of board to open. The types of boards to open are as follows:

BiTypeR2 - RoadRunner or R3 type board.
BiTypeR64 - R64, R64e, Karbon, Neon or Alta type board.
BiTypeGn2 - Aon, Axion, Cyton or Claxon type board.
BiTypeAny - Opens boards by number, ignoring the board type.

BrdNumber

Specifies the board number to open. Boards are numbered sequentially as they are
found when the system boots. A given board will be the same number every time the
system boots as long as the number of boards is the same and the boards are in the
same PCI slots.

*pBrdHandle

A pointer to the board handle after successfully opening a board. This handle is used
for all further accesses to the newly opened board.

ForceCamFile

The camera file to open. The camera file should include the name and the file exten-
tion. If only the file name and extention are given, the camera configuration path is
searched for the camera file. (The camera configuration path by default is the Config
folder under the SDK root.) If the full path is given, the camera file will try and be
opened from that location.

*Options

Special board open options. Can be one or more of the following:

BFSysInitialize - Initialize the system.
BFSysExclusive - If not already open, open exclusively.
BFSysNoIntThread - Do not activate interrupt thread.
BFSysNoCameraOpen - Do not open any camera configurations.
BFSysNoAlreadyOpenMess - Supress already open warning message.
BFSysNoOpenErrorMess - Supress all error popups in open function.
BFSysSecondProcessOpen - Allow the board to be opened twice in the

same process (includes some of the above modes).
BFSysAllowTwoOpens - Allow the board to be opened twic ein the same

BufIn Board Functions BiBrdOpenCamEx

Version G.8 BitFlow, Inc. SDK-2-9

process, and initialized.
BFSysNoPoCLChange - This flag forces the system to leave the PoCL sys-

tem as is (don't change its state).
BFSysPoCLUpOnly - This flag will power up PoCL if it is off, but won't turn it

off, if it is on.
BFSysSerialPortOpen - used when opening the serial port, included some

of the above flags
BFSysNoCXPInit - Don't initialize the CXP subsystem
BFSysNoGenTLInit - Don't use GenTL camera control during board initial-

ization.
BFSysNoIOReset - Do not reset I/O outputs before setting them as per con-

figuration file

Returns

Comments This function opens the board for all accesses. The board must be opened before any
other functions can be called. When you are finished accessing the board you must
call BiBrdClose, before exiting your process. Failure to call BiBrdClose will result in
incorrect board open counts used by the driver.

If BiBrdOpenCam fails, you cannot access the board, and you do not need to call
BiBrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board. You should only
call this function once per process per board and in only one thread. You can call this
function again in the same process but you must call BiBrdClose first.

When BiBrdOpen is used, the default options are used. In this case BiBrdOpen opens
the board with the option BFSysInitialize. When using BiBrdOpenCamEx, it is
recommend that you use at least the option BFSysInitialize as well as other
options as needed.

BI_OK A board was found and opened.

BI_ERROR_BOARD_NOT_
FOUND

There is no board with this number.

BI_ERROR_UNKNOWN_TYPE The board type specified by BrdType is
unknown.

BI_ERROR_SYSTEM A error occurred while searching for the
board information in the registry.

BI_ERROR_OPENING Board was found but could not be opened.

BiBrdOpenSWConnector BitFlow SDK

SDK-2-10 BitFlow, Inc. Version G.8

2.6 BiBrdOpenSWConnector

Prototype BIRC BiBrdOpenSWConnector(BFU32 BrdType, BFU32 Switch, BFU32 Connector,
Bd *pBrdHandle)

Description Opens a board with the given switch value and connector number for access. This
function must return successfully before any other BI functions are called.

Parameters BrdType

Type of board to open. The types of boards to open are as follows:

BiTypeR2 - RoadRunner or R3 type board.
BiTypeR64 - R64, R64e, Karbon, Neon or Alta type board.
BiTypeGn2 - Aon, Axion, Cyton or Claxon type board.
BiTypeAny - Opens boards by number, ignoring the board type.

Switch

Specifies the switch setting of the board that you wish to open. The swith is a small
mechanical switch that is mounted on the upper edge of the board. See that hard-
ware reference manual for more details on location. The acceptable values are 0 to 3.

Connector

Specifies the connector number of the board that you wish to open. This parameter is
only for use for boards that have more than one Virtual Frame Grabber (VFG). For
boards with only one VFG, this value must be 1. Connector numbers start with 1, as
per the hardware manual. For example, the Neon-CLQ has connectors CL1, CL2, CL3
and CL4. Therefore, to open CL2, this parameter must be set to two.

*pBrdHandle

A pointer to the board handle after successfully opening a board. This handle is used
for all further accesses to the newly opened board.

Returns

BI_OK A board was found and opened.

BI_ERROR_BOARD_NOT_
FOUND

There is no board with this number.

BI_ERROR_UNKNOWN_TYPE The board type specified by BrdType is
unknown.

BI_ERROR_SYSTEM A error occurred while searching for the
board information in the registry.

BI_ERROR_OPENING Board was found but could not be opened.

BFSYS_ERROR_NOTFOUND No board was found with the given Switch
and Connector values.

BufIn Board Functions BiBrdOpenSWConnector

Version G.8 BitFlow, Inc. SDK-2-11

Comments This function opens the board for all accesses. The board must be opened before any
other functions can be called. When you are finished accessing the board you must
call BiBrdClose, before exiting your process. Failure to call BiBrdClose will result in
incorrect board open counts used by the driver.

If BiBrdOpenSWConnect fails, you cannot access the board, and you do not need to
call BiBrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board. You should only
call this function once per process per board and in only one thread. You can call this
function again in the same process but you must call BiBrdClose first.

This function provides and alternate way to open up a board. In a system with more
than one board and/or when a board has more than one Virtual Frame Grabber(
VFG), this function can make opening the desired board much easier.

For example, if a system has two NEO-PCE-CLQ boards installed, there are actually 8
VFGs in the system. This means opening the exact board needed can be somewhat
complicated, as the normal board open functions take a board number, in this case 0
to 8. It can be complicated correlating this board number with the connectors in the
back of the PC. This function is designed to handle this case. Make sure to set the
switch settings of each board differently (up to four boards can be differentiated).
Then set the Connector value to the CL connector of the desired board (and cam-
era).

Let’s look closer at this example. Say the system has two NEO-PCE-CLQ boards
installed, one has its switch set to 0 and the other to 1. Let’s say that we want to open
the camera connected to the CL4 connector of the board that has its switch set to 1.
The following function call should be made:

BiBrdOpenSWConnector(BiTypeAny, 1, 4, &hBoard);

BiBrdInquire BitFlow SDK

SDK-2-12 BitFlow, Inc. Version G.8

2.7 BiBrdInquire

Prototype BIRC BiBrdInquire(Bd Board, BFU32 InquireVar, PBFU32 pVal)

Description Used to inquire the system characteristics of the board. Can also be called with
CiCamInquire members which are then passed to that function using the current cam-
era.

Parameters Board

Board to handle.

InquireVar

Parameter to inquire about:

BiBrdInqModel - returns the board model. The parameter pVal will point to one of:

BFBrdValUnknown
BFBrdValModel11
BFBrdValModel12
BFBrdValModel13
BFBrdValModel14
BFBrdValModel23
BFBrdValModel24
BFBrdValModel44
BFBrdValModel010
BFBrdValModel110
BFBrdValModel220
BFBrdValModel330
BFBrdValModel440
BFBrdValModelR64Dif
BFBrdValModelR64Cl
BFBrdValModelR64DifB
BFBrdValModelR64ClB
BFBrdValModelR64DifH
BFBrdValModelR64ClH
BFBrdValModelR64DifHB
BFBrdValModelR64ClHB

BiBrdInqSpeed - returns the board receivers speed for the RoadRunner. The parame-
ter pVal will point to one of:

BFBrdValSpeedNormalR2
BFBrdValSpeed40MHzR2

BiBrdInqLUT - the type of LUT mounted on the board. The parameter pVal will point
to one of:

BFBrdValLUT8And12

BufIn Board Functions BiBrdInquire

Version G.8 BitFlow, Inc. SDK-2-13

BFBrdValLUT16
BFBrdValLUTNone

BiBrdInqIDReg - the current setting of the ID switch on the board (0,1,2,3).

BiBrdInqScanType - returns the scan type for the Raven only. The parameter pVal will
point to one of:

BFBrdValStandard - board will only work with standard scan cameras.
BFBrdValVariable - board will work with variable scan cameras and stan-

dard scan cameras.

BiBrdInqAnalogType - returns the type of analog video input the Raven is setup for.
The parameter pVal will point to one of:

BFBrdValDifferential - the Raven has differential video input.
BFBrdBalSingle - the Raven has single ended video input.

BiBrdInqNumCams - returns the number of cameras the Raven is configured for.

Camera inquiry parameters are also valid. The pVal parameter will point to the value
for the board’s current camera. The InquireVar must be one of the following:

BiCamInqXSize - width of image in pixels.
BiCamInqYSize0 - camera 0 height of image in lines.
BiCamInqYSize1 - camera 1 height of image in lines. (for Raven use only)
BiCamInqYSize2 - camera 2 height of image in lines.(for Raven use only)
BiCamInqYSize3 - camera 3 height of image in lines.(for Raven use only)
BiCamInqFormat - image format.
BiCamInqBitsPerPix - depth of pixel in bits, as acquired to host.
BiCamInqBytesPerPix - depth of pixel in bytes, as acquired to host.
BiCamInqBytesPerPixDisplay - depth of pixel in bytes, as acquired to dis-

play. (for RoadRunner use only)
BiCamInqBitsPerSequence - depth of multi-channel pixel in bits, as

acquired to host.for RoadRunner use only)
BiCamInqBitsPerSequenceDisplay - depth of multi-channel pixel in bits, as

acquired to display.for RoadRunner use only)
BiCamInqFrameSize0 - camera 0 total size of image in bytes, as acquired

to host.
BiCamInqFrameSize1 - camera 1 total size of image in bytes, as acquired

to host. (for Raven use only)
BiCamInqFrameSize2 - camera 2 total size of image in bytes, as acquired

to host. (for Raven use only)
BiCamInqFrameSize3 - camera 3 total size of image in bytes, as acquired

to host. (for Raven use only)
BiCamInqDisplayFrameSize0 - total size of image in bytes, as acquired to

display. (for RoadRunner and R3 use only)
BiCamInqFrameWidth - width of image in bytes, as acquired to host.
BiCamInqDisplayFrameWidth - width of image in bytes, as acquired to dis-

play. (for RoadRunner and R3 use only)

BiBrdInquire BitFlow SDK

SDK-2-14 BitFlow, Inc. Version G.8

BiCamInqAqTimeout - number of milliseconds to wait before acquisition
command times out.

BiCamInqCamType - camera type.
BiCamInqControlType - type of camera control accessible through API. (for

RoadRunner and R3 use only)

pVal

Pointer returned containing the requested value.

Returns

Comments This function is used to inquire of the system characteristics of the board.

BI_OK Function was successful.

BI_ERROR_BAD_BOARDPTR_INQ Bad board pointer, or board type
unknown.

BI_ERROR_UNKNOWN_PARAME-
TER

InquireVar parameter is unknown for this
board.

BufIn Board Functions BiBrdClose

Version G.8 BitFlow, Inc. SDK-2-15

2.8 BiBrdClose

Prototype BIRC BiBrdClose(Bd Board)

Description Closes the board and frees all associated resources.

Parameters Board

Board to handle.

Returns

Comments This function closes the board and releases associated resources. This function must
be called whenever a process exits regardless of the reason the process is exiting. The
only time that this function does not have to be called is if BiBrdOpen fails. This func-
tion decrements the internal counters that are used to keep track of the number of
processes that have opened the board.

BI_OK In all cases.

BiBrdClose BitFlow SDK

SDK-2-16 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-3-1

BufIn Camera Functions

Chapter 3

3.1 Introduction

One of the most powerful features of BitFlow’s interface boards, is the ability for the board
to interface to an almost infinite variety of cameras. The knowledge behind these inter-
faces is stored in the camera configuration files.

The normal way a BitFlow application works is that the board is initialized to interface to
the camera currently attached to the board. The currently attached camera is selected in
the SysReg utility program. Normally an application is written so that it will work with
whatever camera is attached. The board is initialized for the currently attached camera
when BiBrdOpen is called. If an application is written this way there is no need to call any
of the functions in this chapter. However, some users may want to manage what cameras
are attached and how the user switches between them using their own software. For this
reason, these camera configuration functions are provided.

The normal flow for an application that wants to manage its own camera files is as follows:

BiBrdOpen
BiCamOpen
BiCamSetCur
// processing and acquisition
BiCamClose
BiBrdClose

If using more than one camera:

BiBrdOpen
BiCamOpen // open camera 0
BiCamOpen // open camera 1
BiCamSetCur // configure for camera 0

// processing and acquisition
BiCamSetCur // configure for camera 1

// processing and acquisition
BiCamClose // close camera 0
BiCamClose // close camera 1
BiBrdClose

BiCamOpen BitFlow SDK

SDK-3-2 BitFlow, Inc. Version G.8

3.2 BiCamOpen

Prototype BFRC BiCamOpen(Bd Board, PBIBA pBufArray, PCHAR CamName, PBFCNF
*pCam)

Description Allocates a camera configuration object, opens a camera configuration file, and loads
the file into the object.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

CamName

The name of the camera file to open. Do not include the path. The camera file must
be in the configuration directory (see the SysReg application). For example:
“GenRS170-PLL.rvc”.

*pCam

A pointer to a camera object. The memory to hold the object is allocated in this func-
tion.

Returns

Comments This function allocates memory to hold a camera configuration object, locates the
given camera configuration file in the configuration directory, checks the file for
errors, then loads the camera configuration parameters into the camera object. The
camera object is used to tell the system how to set up the board to acquire from a par-
ticular camera. Use the program CamVert to edit camera configuration files.

The resulting camera object can be passed to other functions such as BiCamSetCur.

The resources allocated by the function must be freed by calling BiCamClose.

BI_OK If successful.

BI_ERROR_CAM_OPEN An error occured while trying to open the camera
file. Please see the event viewer for more infor-
mation on this failure. Most times the problem is
that the camera file specified does not exist or
could not be found.

BufIn Camera Functions BiCamClose

Version G.8 BitFlow, Inc. SDK-3-3

3.3 BiCamClose

Prototype BFRC BiCamClose(Bd Board, PBIBA pBufArray, PBFCNF pCam)

Description Frees resources used by a camera object.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

pCam

Camera object.

Returns

Comments This function frees all resources used by a camera object.

BI_OK If successful.

BI_ERROR_CAM_CLOSE An error occured while closing the camera file.

BiCamSel BitFlow SDK

SDK-3-4 BitFlow, Inc. Version G.8

3.4 BiCamSel

Prototype BFRC BiCamSel(Bd Board, PBIBA pBufArray, BFU32 CamIndex, BFU32 Mode)

Description Sets a board’s current camera to the camera with the given index. Depending on the
mode, the board can also be initialized for this camera.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

CamIndex

Index of camera to become current. Index is set in SysReg.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but do not modify the board.
CiSysConfigure - initialize the board for this camera.

Returns

Comments Each board has associated with it a list of configured cameras (set in the SysReg appli-
cation) and a current camera. By default, the current camera is the first camera in the
list of configured cameras. The current camera is important because it dictates the
parameters used for acquisition. There must be a current camera set in order to use
the acquisition functions. This function allows you to pick one of the configured cam-
eras to be the current camera.

If Mode = CiSysConfigure, the board will be initialized for the given camera.

This function is useful for switching on-the-fly between multiple preconfigured cam-
era types.

BI_OK Function was successful.

BI_ERROR_CAM_SEL If an error occurs selecting the camera index. This
is usually caused by an invalid CamIndex.

BufIn Camera Functions BiCamSetCur

Version G.8 BitFlow, Inc. SDK-3-5

3.5 BiCamSetCur

Prototype BFRC BiCamSetCur(Bd Board, PBIBA pBufArray, PRVCAM pCam, BFU32 Mode)

Description Sets the current camera to the camera object pCam that is not necessarily one of the
preconfigured cameras. The board can be optionally initialized to the camera.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

pCam

A camera object.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but does not modify the board.
CiSysConfigure - initialize the board for this camera.

Returns

Comments This function sets the current camera to a camera object that is not one of the cameras
already configured for the board (via SysReg). The camera must already be opened
successfully (see BiCamOpen).

This function allows you to handle your own camera management. You can select,
open, configure and close cameras to suit your applications needs independently of
the SDK’s camera management.

If Mode = CiSysConfigure, the board will be initialized for the given camera.

BI_OK Function was successful.

BI_ERROR_CAM_SET_CUR If an error occurs setting the camera file.

BiCamGetCur BitFlow SDK

SDK-3-6 BitFlow, Inc. Version G.8

3.6 BiCamGetCur

Prototype BFRC BiCamGetCur(Bd Board, PBIBA pBufArray, PBFCNF *pCam)

Description Gets the current camera object the board is using.

Parameters Board

Board to select.

pBufArray

A pointer to a structure that holds all acquisition information.

*pCam

Pointer to the camera object.

Returns

Comments

BI_OK If successful.

BI_ERROR_GET_CUR If unable to retrieve the current camera object.

BufIn Camera Functions BiCamGetFileName

Version G.8 BitFlow, Inc. SDK-3-7

3.7 BiCamGetFileName

Prototype BFRC BiCamGetFileName (Bd Board, PBIBA pBufArray, BFU32 Num, PBFCHAR
CamName, BFSIZET CamNameStLen)

Description Gets the file name of the attached camera(s).

Parameters Board

Board to select.

pBufArray

A pointer to a structure that holds all acquisition information.

Num

Camera number to get the name of.

CamName

Contains the file name of the camera configuration.

CamNameStLen

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter CamName.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. These configurations are attached to the board in SysReg. The Num parame-
ter corresponds to the number configuration in the list of attached cameras in SysReg.

BI_OK If successful.

BI_ERROR_CAM_FILENAME If unable to return the name of the camera file.

BiCamGetFileName BitFlow SDK

SDK-3-8 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-4-1

BufIn Acquisition Functions

Chapter 4

4.1 Introduction

The acquisition functions are some of the most important in the BufIn SDK. While the ini-
tialization functions set up the board’s registers for a particular camera, these functions do
most of the work required to get the board reading to DMA the images to memory.

The concept here is that the setup functions are time and CPU intensive, so they should
be called before any time critical processing has begun. In a sense, these are extensions
of the initialization process. Once the setup functions are called for a particular buffer,
they need not be called again.

The cleanup function frees up any resources allocated in the setup functions, and put the
DMA engine in an idle mode.

For example, the basic flow of a program would be:

BiBrdOpen
BiSeqAqSetup or BiCircAqSetup
Loop

// Acquisitions and/or processing

BiSeqCleanUp or BiCircCleanUp
BiBrdClose

The bulk of the work is done in the setup functions. These functions create a scatter
gather table based on the virtual memory address, called a relative QTab.

The relative QTab is passed to the kernel driver, where the destination buffer is locked
down (so that it cannot be paged to disk) and the physical address are determined for
each page of the buffer (Windows uses 4K byte pages). These physical addresses are
used to build a physical QTab. This physical QTab is then written to the board in prepara-
tion scatter gather DMAing.

Finally, the DMA engine is initialized and started. Again, this function need be called only
once, for a particular destination buffer.

BiSeqAqSetup BitFlow SDK

SDK-4-2 BitFlow, Inc. Version G.8

4.2 BiSeqAqSetup

Prototype BIRC BiSeqAqSetup(Bd Board, PBIBA pBufArray, BFU32 Options)

Description Sets up the system for sequence acquisition. When the system is setup using this
function it will do only one thing, acquire frames sequentially to the host buffers.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Options

Setup options for sequence capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.
DisableAqErrorSig - The overflow and hardware exception signals will not

be created.
UseHighResTimer - The high resolution timer is used to time stamp incom-

ing image data.
InvertEvenFrames - The even frames will be DMAed from the bottom of

the buffer to the top.
InvertOddFrames - The odd frames will be DMAed from the bottom of the

buffer to the top.
OnlyOddLines - The board will DMA the incoming image to only the odd

lines of the host buffer (2x DMA on the Karbon only).
OnlyEvenLines - The board will DMA the incoming image to only the even

lines of the host buffer (2x DMA on the Karbon only).

Returns

BI_OK If successful.

BI_ERROR_LUT_MASK Error in masking LUT.

BI_ERROR_QTABARRAY_MEM Lack of memory for QTab array allocation.

BI_ERROR_REL_QTAB Error creating any/all relative QTABs.

BI_ERROR_PHYS_QTAB Error creating any/all physical QTABs.

BI_ERROR_CREATE_CTAB_SIG Unable to create signal for CTABs.

BI_ERROR_CREATE_THREAD Unable to create worker thread.

BI_ERROR_SIGCREATE_EX Unable to create signal for exceptions.

BI_ERROR_SIGCREATE_OVF Unable to create signal for overflow.

BufIn Acquisition Functions BiSeqAqSetup

Version G.8 BitFlow, Inc. SDK-4-3

Comments This function sets up the entire board’s acquisition systems for acquisition to host. This
function need be called only once, before acquisition begins. It does not need to be
called again unless BiSeqCleanUp is called. BiSeqCleanUp should be called when
done acquiring in order to free up resources used by this process. Once this function
is called, the function BiSeqControl can be used to grab, freeze or abort acquisition.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BI_ERROR_SIGCREATE_QUAD Unable to create signal for quad done.

BI_ERROR_SIGCREATE_

STARTSTOP

Unable to create signal for start/stop.

BI_ERROR_CREATE_

ERRORTHREAD

Unable to create error thread.

BI_ERROR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_P_QTABARRAY_MEM Lack of memory for array of host QTab point-
ers.

BI_ERROR_CHAIN_LINK Error linking physical qtabs together.

BI_ERROR_QTABHOST_SKIP-
FRAME

Skip frames is currently not supported for
host qtabs.

BI_ERROR_HOST_MODE Board is currently setup for qtabs on the
board.

BI_ERROR_SEQINFO_MEM Lack of memory for sequence buffer infor-
mation.

BI_ERROR_SEQARRAY_MEM Lack of memory for sequence buffer infor-
mation array.

BiSeqAqSetupROI BitFlow SDK

SDK-4-4 BitFlow, Inc. Version G.8

4.3 BiSeqAqSetupROI

Prototype BIRC BiSeqAqSetupROI(Bd Board, PBIBA pBufArray, BFU32 XOffset, BFU32 YOffset,
BFU32 XSize, BFU32 YSize, BFU32 Options)

Description Sets up the system for sequence acquisition. When the system is setup using this
function it will do only one thing, acquire frames sequentially to the host buffers. The
board will be setup for the given sub-window (ROI).

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

XOffset

Number of pixels to offset horizontally the captured sub-window from the camera’s
output image.

YOffset

Number of lines to offset vertically the captured sub-window from the camera’s output
image.

XSize

Width in pixels of the captured sub-window.

YSize

Height in lines of the captured sub-window.

Options

Setup options for sequence capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.
DisableAqErrorSig - The overflow and hardware exception signals will not

be created.
UseHighResTimer - The high resolution timer is used to time stamp incom-

ing image data.
InvertEvenFrames - The even frames will be DMAed from the bottom of

the buffer to the top.
InvertOddFrames - The odd frames will be DMAed from the bottom of the

buffer to the top.
OnlyOddLines - The board will DMA the incoming image to only the odd

lines of the host buffer (2x DMA on the Karbon only).

BufIn Acquisition Functions BiSeqAqSetupROI

Version G.8 BitFlow, Inc. SDK-4-5

OnlyEvenLines - The board will DMA the incoming image to only the even
lines of the host buffer (2x DMA on the Karbon only).

Returns

BI_OK If successful.

BI_ERROR_LUT_MASK Error in masking LUT.

BI_ERROR_QTABARRAY_MEM Lack of memory for QTab array allocation.

BI_ERROR_REL_QTAB Error creating any/all relative QTABs.

BI_ERROR_PHYS_QTAB Error creating any/all physical QTABs.

BI_ERROR_CREATE_CTAB_SIG Unable to create signal for CTABs.

BI_ERROR_CREATE_THREAD Unable to create worker thread.

BI_ERROR_SIGCREATE_EX Unable to create signal for exceptions.

BI_ERROR_SIGCREATE_OVF Unable to create signal for overflow.

BI_ERROR_SIGCREATE_QUAD Unable to create signal for quad done.

BI_ERROR_SIGCREATE_

STARTSTOP

Unable to create signal for start/stop.

BI_ERROR_CREATE_

ERRORTHREAD

Unable to create error thread.

BI_ERROR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_P_QTABARRAY_MEM Lack of memory for array of host QTab point-
ers.

BI_ERROR_CHAIN_LINK Error linking physical qtabs together.

BI_ERROR_QTABHOST_SKIP-
FRAME

Skip frames is currently not supported for
host qtabs.

BI_ERROR_HOST_MODE Board is currently setup for qtabs on the
board.

BI_ERROR_SEQINFO_MEM Lack of memory for sequence buffer infor-
mation.

BI_ERROR_SEQARRAY_MEM Lack of memory for sequence buffer infor-
mation array.

BI_ERROR_CIR_ROI_ERROR The board can not be programmed to the
requested ROI

BiSeqAqSetupROI BitFlow SDK

SDK-4-6 BitFlow, Inc. Version G.8

Comments This function sets up the entire board’s acquisition systems for acquisition to host. This
function need be called only once, before acquisition begins. It does not need to be
called again unless BiSeqCleanUp is called. BiSeqCleanUp should be called when
done acquiring in order to free up resources used by this process. Once this function
is called, the function BiSeqControl can be used to grab, freeze or abort acquisition.

This function programs the board to capture a sub-windows out of the camera’s full
resolution output. The sub-window must be smaller than the resolution as set in the
camera configuration file. There granularity of the parameters XOffset and XSize will
vary depending on frame grabber model and tap format, however, it will generally be
greater than four pixels. The granularity of the parameters YOffset and YSize is one in
most cases.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BufIn Acquisition Functions BiSeqAqSetupPitch

Version G.8 BitFlow, Inc. SDK-4-7

4.4 BiSeqAqSetupPitch

Prototype BIRC BiSeqAqSetupPitch(Bd Board, PBIBA pBufArray, BFU32 Pitch, BFU32
Options)

Description Sets up the system for sequence acquisition. When the system is setup using this
function it will do only one thing, acquire frames sequentially to the host buffers. This
function allows the user to override the default pitch use to write pixels in the host
buffer. Changing to different pitch supports acquiring into a buffer that is “wider” than
the line size.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Pitch

Number of bytes the DMA engine should use when calculating the memory offset
from a pixel on one line to the same pixel on the line below.

Options

Setup options for sequence capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.
DisableAqErrorSig - The overflow and hardware exception signals will not

be created.
UseHighResTimer - The high resolution timer is used to time stamp incom-

ing image data.
InvertEvenFrames - The even frames will be DMAed from the bottom of

the buffer to the top.
InvertOddFrames - The odd frames will be DMAed from the bottom of the

buffer to the top.
OnlyOddLines - The board will DMA the incoming image to only the odd

lines of the host buffer (2x DMA on the Karbon only).
OnlyEvenLines - The board will DMA the incoming image to only the even

lines of the host buffer (2x DMA on the Karbon only).

Returns

BI_OK If successful.

BI_ERROR_LUT_MASK Error in masking LUT.

BI_ERROR_QTABARRAY_MEM Lack of memory for QTab array allocation.

BiSeqAqSetupPitch BitFlow SDK

SDK-4-8 BitFlow, Inc. Version G.8

Comments This function sets up the entire board’s acquisition systems for acquisition to host. This
function need be called only once, before acquisition begins. It does not need to be
called again unless BiSeqCleanUp is called. BiSeqCleanUp should be called when
done acquiring in order to free up resources used by this process. Once this function
is called, the function BiSeqControl can be used to grab, freeze or abort acquisition.

This function programs the board to capture using a non-standard pitch. Pitch is the
number of bytes between that address of the first pixel on one line to the first pixel on
the line below it. By using a custom pitch, the board can be used to DMA an image
into a buffer that is wider than the number of pixels in the line. This can be useful
when stitching the output from two adjacent cameras into the same host buffer.

BI_ERROR_REL_QTAB Error creating any/all relative QTABs.

BI_ERROR_PHYS_QTAB Error creating any/all physical QTABs.

BI_ERROR_CREATE_CTAB_SIG Unable to create signal for CTABs.

BI_ERROR_CREATE_THREAD Unable to create worker thread.

BI_ERROR_SIGCREATE_EX Unable to create signal for exceptions.

BI_ERROR_SIGCREATE_OVF Unable to create signal for overflow.

BI_ERROR_SIGCREATE_QUAD Unable to create signal for quad done.

BI_ERROR_SIGCREATE_

STARTSTOP

Unable to create signal for start/stop.

BI_ERROR_CREATE_

ERRORTHREAD

Unable to create error thread.

BI_ERROR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_P_QTABARRAY_MEM Lack of memory for array of host QTab point-
ers.

BI_ERROR_CHAIN_LINK Error linking physical qtabs together.

BI_ERROR_QTABHOST_SKIP-
FRAME

Skip frames is currently not supported for
host qtabs.

BI_ERROR_HOST_MODE Board is currently setup for qtabs on the
board.

BI_ERROR_SEQINFO_MEM Lack of memory for sequence buffer infor-
mation.

BI_ERROR_SEQARRAY_MEM Lack of memory for sequence buffer infor-
mation array.

BI_ERROR_CIR_ROI_ERROR The board can not be programmed to the
requested ROI

BufIn Acquisition Functions BiSeqAqSetupPitch

Version G.8 BitFlow, Inc. SDK-4-9

For example, if the two cameras were 1024 pixel each. You could allocated a host buf-
fer that is 2048 pixels wide. The frame grabber could be set up to acquire from the
first camera in the left half of the host buffer, using a pitch of 2048. The other camera
could be set up to acquire into the right half of the host buffer also using a pitch of
2048.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BiCircAqSetup BitFlow SDK

SDK-4-10 BitFlow, Inc. Version G.8

4.5 BiCircAqSetup

Prototype BIRC BiCircAqSetup(Bd Board, PBIBA pBufArray, BFU32 ErrorMode, BFU32
Options)

Description Sets up the system for acquisition to a circular set of buffers. For circular buffer acqui-
sition the board will be acquiring into one buffer while the CPU processes a previous
buffer.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

ErrorMode

 If the system is filling buffers faster than the user is marking them available, eventually
the system will run out of buffers. The user can control what to do in this situation with
the following error modes:

CirErStop - Stop acquiring images if the buffers are full and unavailable.
CirErIgnore - Continue acquisition by overwriting the buffers regardless of

the status.

Options

Setup options for circular capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.
DisableAqErrorSig - The overflow and hardware exception signals will not

be created.
UseHighResTimer - The high resolution timer is used to time stamp incom-

ing image data.
InvertEvenFrames - The even frames will be DMAed from the bottom of

the buffer to the top.
InvertOddFrames - The odd frames will be DMAed from the bottom of the

buffer to the top.
OnlyOddLines - The board will DMA the incoming image to only the odd

lines of the host buffer (2x DMA on the Karbon only).
OnlyEvenLines - The board will DMA the incoming image to only the even

lines of the host buffer (2x DMA on the Karbon only).

Returns

BI_OK If successful.

BufIn Acquisition Functions BiCircAqSetup

Version G.8 BitFlow, Inc. SDK-4-11

Comments This function sets up the system for acquisition to a circular set of buffers. The concept
of circular buffers is that the board will aqcquire to one buffer out of the set while the
CPU processes another, different buffer out of the set. Each buffer in the set has its
own status. The buffers will start out with the status of BIAVAILABLE. The status of the
buffers will change from BIAVAILABlE to BIFRESH when the buffer is filled with new
data from the board. With the BiCirWaitDoneFrame function, the user removes the
buffer from the queue and the buffers status is marked BINEW. When the user is done
processing the buffer, it is their responsibility to mark the buffer BIAVAILABLE with the
BiCirStatusSet function. The user can also use the BiCirStatusSet function to give a
buffer status of BIHOLD. If a buffer has a status of BIHOLD, the buffer will not be
acquired into the next time it is up as a destination. The marked BIHOLD will be
skipped indefinitely until the user marks the buffer as BIAVAILABLE.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BI_ERROR_CIR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_CIR_FIRMWARE Host QTab firmware is not present on the
board.

BI_ERROR_CIR_LUT_MASK Error in masking LUT.

BI_ERROR_CIR_QTABARRAY_MEM Lack of memory for QTab array.

BI_ERROR_CIR_P_QTABARRAY_
MEM

Lack of memory for array of host QTab
pointers.

BI_ERROR_CIR_REL_QTAB Could not create all relative QTABs.

BI_ERROR_CIR_PHYS_QTAB Could not create all physical QTABs.

BI_ERROR_CIR_CHAIN_LINK Could not link qtabs.

BI_ERROR_CIR_CREATE_THREAD Could not create circular worker thread.

BI_ERROR_CIR_SIG_OVF Overflow signal not created.

BI_ERROR_CIR_SIG_EX Exception signal not created.

BI_ERROR_CIR_SIG_QUAD Quad done signal not created.

BI_ERROR_CIR_SIG_STARTSTOP Start/Stop signal not created.

BI_ERROR_CIR_SIG_ERROR-
THREAD

Internal error signal not created.

BI_ERROR_CIR_BUF_STAT Lack of memory to create buffer status
array.

BI_ERROR_CIR_BUF_QUEUE Lack of memory to create circular buffer
queue.

BiCircAqSetupROI BitFlow SDK

SDK-4-12 BitFlow, Inc. Version G.8

4.6 BiCircAqSetupROI

Prototype BIRC BiCircAqSetupROI(Bd Board, PBIBA pBufArray, BFU32 XOffset, BFU32 YOff-
set, BFU32 XSize, BFU32 YSize, BFU32 ErrorMode, BFU32 Options)

Description Sets up the system for acquisition to a circular set of buffers. For circular buffer acqui-
sition the board will be acquiring into one buffer while the CPU can be processing a
previous buffer. The board will be setup for the given sub-window (ROI).

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

XOffset

Number of pixels to offset horizontally the captured sub-window from the camera’s
output image.

YOffset

Number of lines to offset vertically the captured sub-window from the camera’s output
image.

XSize

Width in pixels of the captured sub-window.

YSize

Height in lines of the captured sub-window.

ErrorMode

 If the system is filling buffers faster than the user is marking them available, eventually
the system will run out of buffers. The user can control what to do in this situation with
the following error modes:

CirErStop - Stop acquiring images if the buffers are full and unavailable.
CirErIgnore - Continue acquisition by overwriting the buffers regardless of

the status.

Options

Setup options for circular capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.

BufIn Acquisition Functions BiCircAqSetupROI

Version G.8 BitFlow, Inc. SDK-4-13

DisableAqErrorSig - The overflow and hardware exception signals will not
be created.

UseHighResTimer - The high resolution timer is used to time stamp incom-
ing image data.

InvertEvenFrames - The even frames will be DMAed from the bottom of
the buffer to the top.

InvertOddFrames - The odd frames will be DMAed from the bottom of the
buffer to the top.

OnlyOddLines - The board will DMA the incoming image to only the odd
lines of the host buffer (2x DMA on the Karbon only).

OnlyEvenLines - The board will DMA the incoming image to only the even
lines of the host buffer (2x DMA on the Karbon only).

Returns

BI_OK If successful.

BI_ERROR_CIR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_CIR_FIRMWARE Host QTab firmware is not download to
board.

BI_ERROR_CIR_LUT_MASK Error in masking LUT.

BI_ERROR_CIR_QTABARRAY_MEM Lack of memory for QTab array.

BI_ERROR_CIR_P_QTABARRAY_
MEM

Lack of memory for array of host QTab
pointers.

BI_ERROR_CIR_REL_QTAB Could not create all relative QTABs.

BI_ERROR_CIR_PHYS_QTAB Could not create all physical QTABs.

BI_ERROR_CIR_CHAIN_LINK Could not link qtabs.

BI_ERROR_CIR_CREATE_THREAD Could not create circular worker thread.

BI_ERROR_CIR_SIG_OVF Overflow signal not created.

BI_ERROR_CIR_SIG_EX Exception signal not created.

BI_ERROR_CIR_SIG_QUAD Quad done signal not created.

BI_ERROR_CIR_SIG_STARTSTOP Start/Stop signal not created.

BI_ERROR_CIR_SIG_ERROR-
THREAD

Internal error signal not created.

BI_ERROR_CIR_BUF_STAT Lack of memory to create buffer status
array.

BI_ERROR_CIR_BUF_QUEUE Lack of memory to create circular buffer
queue.

BI_ERROR_CIR_ROI_ERROR The board can not be programmed to the
requested ROI

BiCircAqSetupROI BitFlow SDK

SDK-4-14 BitFlow, Inc. Version G.8

Comments This function sets up the system for acquisition to a circular set of buffers. The concept
of circular buffers is that the board will be acquiring to one buffer out of the set, while
the CPU can be processing another, different, buffer out of the set. Each buffer in the
set has its own status. The buffers will start out with the status of BIAVAILABLE. The
status of the buffers will change from BIAVAILABlE to BIFRESH when the buffer is filled
with new data from the board. With the BiCirWaitDoneFrame function, the user
removes the buffer from the queue and the buffers status is marked BINEW. When the
user is done processing the a buffer, it is their responsibility to mark the buffer
BIAVAILABLE with the BiCirStatusSet function. The user can also use the BiCirStatus-
Set function to give a buffer status of BIHOLD. If a buffer has a status of BIHOLD, the
buffer will not be acquired into the next time it is up as a destination. The marked
BIHOLD will be skipped indefinitely until the user marks the buffer as BIAVAILABLE.

This function programs the board to capture a sub-windows out of the camera’s full
resolution output. The sub-window must be smaller than the resolution as set in the
camera configuration file. There granularity of the parameters XOffset and XSize will
vary depending on frame grabber model and tap format, however, it will generally be
greater than four pixels. The granularity of the parameters YOffset and YSize is one in
most cases.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BufIn Acquisition Functions BiCircAqSetupPitch

Version G.8 BitFlow, Inc. SDK-4-15

4.7 BiCircAqSetupPitch

Prototype BIRC BiCircAqSetupPitch(Bd Board, PBIBA pBufArray, BFU32 Pitch, BFU32
Options)

Description Sets up the system for acquisition to a circular set of buffers. For circular buffer acqui-
sition the board will be acquiring into one buffer while the CPU can be processing a
previous buffer. This function allows the user to override the default pitch use to write
pixels in the host buffer. Changing to different pitch supports acquiring into a buffer
that is “wider” than the line size.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Pitch

Number of bytes the DMA engine should use when calculating the memory offset
from a pixel on one line to the same pixel on the line below.

ErrorMode

 If the system is filling buffers faster than the user is marking them available, eventually
the system will run out of buffers. The user can control what to do in this situation with
the following error modes:

CirErStop - Stop acquiring images if the buffers are full and unavailable.
CirErIgnore - Continue acquisition by overwriting the buffers regardless of

the status.

Options

Setup options for circular capture are as follows:

BiAqEngJ - Use DMA engine J. Only the J engine can be used at this time.
AbortMissedFrame - If a frame is missed, acquisition will stop.
DisableAqErrorSig - The overflow and hardware exception signals will not

be created.
UseHighResTimer - The high resolution timer is used to time stamp incom-

ing image data.
InvertEvenFrames - The even frames will be DMAed from the bottom of

the buffer to the top.
InvertOddFrames - The odd frames will be DMAed from the bottom of the

buffer to the top.
OnlyOddLines - The board will DMA the incoming image to only the odd

lines of the host buffer (2x DMA on the Karbon only).
OnlyEvenLines - The board will DMA the incoming image to only the even

BiCircAqSetupPitch BitFlow SDK

SDK-4-16 BitFlow, Inc. Version G.8

lines of the host buffer (2x DMA on the Karbon only).

Returns

Comments This function sets up the system for acquisition to a circular set of buffers. The concept
of circular buffers is that the board will be acquiring to one buffer out of the set, while
the CPU can be processing another, different, buffer out of the set. Each buffer in the
set has its own status. The buffers will start out with the status of BIAVAILABLE. The
status of the buffers will change from BIAVAILABlE to BIFRESH when the buffer is filled
with new data from the board. With the BiCirWaitDoneFrame function, the user
removes the buffer from the queue and the buffers status is marked BINEW. When the
user is done processing the a buffer, it is their responsibility to mark the buffer
BIAVAILABLE with the BiCirStatusSet function. The user can also use the BiCirStatus-
Set function to give a buffer status of BIHOLD. If a buffer has a status of BIHOLD, the
buffer will not be acquired into the next time it is up as a destination. The marked
BIHOLD will be skipped indefinitely until the user marks the buffer as BIAVAILABLE.

BI_OK If successful.

BI_ERROR_CIR_ENGINEK DMA engine K is currently not supported.

BI_ERROR_CIR_FIRMWARE Host QTab firmware is not download to
board.

BI_ERROR_CIR_LUT_MASK Error in masking LUT.

BI_ERROR_CIR_QTABARRAY_MEM Lack of memory for QTab array.

BI_ERROR_CIR_P_QTABARRAY_
MEM

Lack of memory for array of host QTab
pointers.

BI_ERROR_CIR_REL_QTAB Could not create all relative QTABs.

BI_ERROR_CIR_PHYS_QTAB Could not create all physical QTABs.

BI_ERROR_CIR_CHAIN_LINK Could not link qtabs.

BI_ERROR_CIR_CREATE_THREAD Could not create circular worker thread.

BI_ERROR_CIR_SIG_OVF Overflow signal not created.

BI_ERROR_CIR_SIG_EX Exception signal not created.

BI_ERROR_CIR_SIG_QUAD Quad done signal not created.

BI_ERROR_CIR_SIG_STARTSTOP Start/Stop signal not created.

BI_ERROR_CIR_SIG_ERROR-
THREAD

Internal error signal not created.

BI_ERROR_CIR_BUF_STAT Lack of memory to create buffer status
array.

BI_ERROR_CIR_BUF_QUEUE Lack of memory to create circular buffer
queue.

BI_ERROR_CIR_ROI_ERROR The board can not be programmed to the
requested ROI

BufIn Acquisition Functions BiCircAqSetupPitch

Version G.8 BitFlow, Inc. SDK-4-17

This function programs the board to capture using a non-standard pitch. Pitch is the
number of bytes between that address of the first pixel on one line to the first pixel on
the line below it. By using a custom pitch, the board can be used to DMA an image
into a buffer that is wider than the number of pixels in the line. This can be useful
when stitching the output from two adjacent cameras into the same host buffer.

For example, if the two cameras were 1024 pixel each. You could allocated a host buf-
fer that is 2048 pixels wide. The frame grabber could be set up to acquire from the
first camera in the left half of the host buffer, using a pitch of 2048. The other camera
could be set up to acquire into the right half of the host buffer also using a pitch of
2048.

Options can be OR together. For example, BiAqEngJ|UseHighResTimer is a legal and
typical usage for the options parameter.

BiSeqCleanUp BitFlow SDK

SDK-4-18 BitFlow, Inc. Version G.8

4.8 BiSeqCleanUp

Prototype BIRC BiSeqCleanUp(Bd Board, PBIBA pBufArray)

Description Frees all resources used by the acquisition process. Makes sure the board is in a sta-
ble state.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function frees all of the resources that were allocated in BiSeqAqSetup. Do not
call this function unless you have already called BiSeqAqSetup and are finished
acquiring into the current buffer.

BI_OK If successful.

BI_ERROR_SIGCANCEL_QUAD Unable to cancel signal for quad done.

BI_ERROR_SIGFREE_QUAD Unable to free signal for quad done.

BI_ERROR_SIGCANCEL_START-
STOP

Unable to cancel signal for start/stop.

BI_ERROR_SIGFREE_STARTSTOP Unable to free signal for start/stop.

BI_ERROR_SIGCANCEL_EX Unable to cancel signal for exceptions.

BI_ERROR_SIGFREE_EX Unable to free signal for exceptions.

BI_ERROR_SIGCANCEL_OVF Unable to cancel signal for overflow.

BI_ERROR_SIGFREE_OVF Unable to free signal for overflow.

BI_ERROR_PHYSQTAB_FREE Unable to free physical qtabs.

BI_ERROR_RELQTAB_FREE Unable to free relative qtabs.

BI_ERROR_AQ_CLEANUP Failure with the CiSeqCleanUp function.

BufIn Acquisition Functions BiCircCleanUp

Version G.8 BitFlow, Inc. SDK-4-19

4.9 BiCircCleanUp

Prototype BIRC BiCircCleanUp(Bd Board, PBIBA pBufArray)

Description Frees all resources used by the acquisition process. Makes sure the board is in a sta-
ble state.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function frees all of the resources that were allocated in BiCircAqSetup. Do not
call this function unless you have already called BiCircAqSetup and are finished
acquiring into the current buffer.

BI_OK If successful.

BI_ERROR_CIR_SIGCANCEL_
QUAD

Unable to cancel signal for quad done.

BI_ERROR_CIR_SIGFREE_QUAD Unable to free signal for quad done.

BI_ERROR_CIR_SIGCANCEL_

STARTSTOP

Unable to cancel signal for start/stop.

BI_ERROR_CIR_SIGFREE_START-
STOP

Unable to free signal for start/stop.

BI_ERROR_CIR_SIGCANCEL_EX Unable to cancel signal for exceptions.

BI_ERROR_CIR_SIGFREE_EX Unable to free signal for exceptions.

BI_ERROR_CIR_SIGCANCEL_OVF Unable to cancel signal for overflow.

BI_ERROR_CIR_SIGFREE_OVF Unable to free signal for overflow.

BI_ERROR_CIR_PHYSQTAB_FREE Unable to free physical qtabs.

BI_ERROR_CIR_RELQTAB_FREE Unable to free relative qtabs.

BI_ERROR_CIR_AQ_CLEANUP Failure with the CiCircCleanUp function.

BiInternalTimeoutSet BitFlow SDK

SDK-4-20 BitFlow, Inc. Version G.8

4.10 BiInternalTimeoutSet

Prototype BIRC BiInternalTimeoutSet(Bd Board, PBIBA pBufArray, BFU32 TimeoutValue)

Description Sets the timeout value for operations within the BufIn acquisition engine.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

TimeoutValue

The timeout value in mS.

Returns

Comments This function sets the timeout value for the internal operations within the Bufin acqui-
sition engine. These operations include, but are not limited to, waiting for a frame,
waiting for acquisition to start or abort, and waiting for active regions with a frame.

BI_OK If successful.

BI_ERROR_TIMEOUT_SET Operation failed, the timeout value was
not set.

BufIn Acquisition Functions BiCallBackAdd

Version G.8 BitFlow, Inc. SDK-4-21

4.11 BiCallBackAdd

Prototype BIRC BiCallBackAdd(Bd Board, PBIBA pBufArray, BiCallBackFuncPtr CallBackFunc,
PBFVOID pUserData)

Description Installs a Call Back function that is called whenever a new frame is acquired.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

CallBackFunc

A pointer to a Call Back function.

pUserData

A pointer to user allocated structure which can contain any context data that might be
needed in the Call Back function when it is actually called. Can be NULL.

Returns

Comments This function registers a function that will be called when ever a new frame has been
acquired and is available for processing. The Call Back function must be removed
prior to closing the board via the function BiCallBackRemove(). After this function is
called, the registered Call Back function will no longer be called.

The Call Back function must have the following format:

void BiCallBackFuncPtr(Bd Board, PBIBA pBufArray, BiCirHandle
CirHandle, PBFVOID pUserData);

BI_OK If successful.

BI_CB_NULL_POINTER The parameter CallBackFunc is not a
valid function pointer.

BI_CB_ALREADY_SET A Call Back function has already been reg-
istered.

BI_CB_BAD_SEMAPHORE Error creating the Windows objected
needed for this Call Back.

BI_CB_THREAD_FAIL Error creating the thread needed for this
Call Back.

BI_CB_THREAD_GOING The thread needed for this Call Back
already exists.

BiCallBackAdd BitFlow SDK

SDK-4-22 BitFlow, Inc. Version G.8

When the Call Back function is called, the CirHandle parameter contains the informa-
tion about the newly acquired frame.

The Call Back function can be used in place of calling BiCircWaitFrameDone(). The
same type of processing can either be done in the Call Back function or in a separate
thread that calls BiCircWaitFrameDone(). Note that the processing in this Call Back
function will take place at a priority set by the BufIn libraries, while calling BiCircWait-
FrameDone() in your own processing thread lets you set the thread priority.

The pointer pUserData is designed so that the user can get context information
inside of the call back function (when it is called). This pointer can point to anything
(cast it inside the call back function). It must be allocated and de-allocated by the user.
It can also be NULL.

BufIn Acquisition Functions BiCallBackRemove

Version G.8 BitFlow, Inc. SDK-4-23

4.12 BiCallBackRemove

Prototype BIRC BiCallBackRemove(Bd Board, PBIBA pBufArray)

Description Removes a Call Back function.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function removes a Call Back function that has been previously registered with
the function BiCallBackAdd(). After this function is called, the registered Call Back
function will no longer be called.

BI_OK If successful.

BiCallBackRemove BitFlow SDK

SDK-4-24 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-5-1

BufIn Memory Functions

Chapter 5

5.1 Introduction

This chapter contains functions that are used for memory management. The user has sev-
eral options under the BufIn SDK. The user can specify the number of buffers they would
like to acquire and let the BiBufferAllocCam function do the work of the proper allocation
of memory, based on the current camera file. To free the memory allocated by BiBufferAl-
locCam, the user should use the BiBufferFree function. The other option for the user is to
allocate memory on there own and assign that memory to the BufIn SDK. The assigning of
user allocated memory to BufIn can be accomplished with the BiBufferAssign function.
The user must use the BiBufferUnassign function to un-assign the user allocated memory
that was assigned to BufIn. The user is also responsible for freeing the memory that was
allocated.

The function BiBufferAlloc is intended to be used when reading from disk with the BiDisk-
BufRead. The BiBufferAllocCam is using the information in the camera file to allocate the
proper size buffers. When reading a image from the disk, we can not use the camera file
for information. BiBufferAlloc is provided to be able to allocate memory in BufIn without
use of a camera file. The user must provide the appropriate information that would be
found in the camera file.

The normal flow for an application using BiBufferAllocCam is as follows:

BiBrdOpen
BiBufferAllocCam
// processing and acquisition
BiBufferFree
BiBrdClose

The normal flow for an application using BiBufferAssign is as follows:

BiBrdOpen
// user allocated memory
BiBufferAssign
// processing and acquisition
BiBufferUnassign
// user frees memory
BiBrdClose

BiBufferAllocCam BitFlow SDK

SDK-5-2 BitFlow, Inc. Version G.8

5.2 BiBufferAllocCam

Prototype BIRC BiBufferAllocCam(Bd Board, PBIBA pBufArray, BFU32 NumBuffers)

Description Allocates memory for the number of buffers specified by parameter NumBuffers. The
buffers are the correct size for the camera currently attached to board.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

NumBuffers

The number of buffers to be allocated.

Returns

Comments This function allocates memory for NumBuffers number of buffers. The buffers are
the correct size for the camera currently attached to board pointed to by handle
board. An array of pointers to the buffers is returned in pBufArray. After a successful
call to BiBufferAllocCam the returned pBufArray pointer will be used for all further
accesses to the newly allocated memory.

BiBufferFree should be called to free up resources used by BiBufferAllocCam.

BI_OK If successful.

BI_ERROR_CAM_NO_MEM_
AVAIL

Lack of memory for buffer allocation. Reduce
number of buffers.

BI_ERROR_CAM_FRAMESIZE Error in inquiring frame size for memory alloca-
tion.

BI_ERROR_CAM_STACK_MEM Lack of memory for error stack.

BI_ERROR_CAM_BUFFERS_
NUM

There must be at least two buffers to allocate.

BI_ERROR_CAM_PIXDEPTH Pixel depth not supported.

BI_ERROR_CAM_UNKNOWN Undefined error.

BufIn Memory Functions BiBufferAlloc

Version G.8 BitFlow, Inc. SDK-5-3

5.3 BiBufferAlloc

Prototype BIRC BiBufferAlloc(Bd Board, PBIBA pBufArray, BFU32 XSize, BFU32 YSize, BFU32
PixDepth, BFU32 NumBuffers)

Description Allocates memory for the number of buffers specified by parameter NumBuffers.
The buffers size is determined by parameters Xsize, YSize and PixDepth.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

XSize

Width of image in pixels.

YSize

Height of image in lines.

PixDepth

Depth of pixels in bits.

NumBuffers

The number of buffers to allocate.

Returns

Comments This function provides a means of allocating memory for bufin when the camera file is
not available and BiBufferAllocCam can not be used. This is the case when reading a
saved image from disk. When reading a image from disk, the camera file is indepen-
dent to this operation.

BI_OK If successful.

BI_ERROR_NO_MEM_AVAIL Lack of memory for buffer allocation. Reduce
number of buffers.

BI_ERROR_FRAMESIZE Error in inquiring frame size for memory allo-
cation.

BI_ERROR_STACK_MEM Lack of memory for error stack.

BI_ERROR_BUFFERS_NUM There must be at least two buffers to allocate.

BI_ERROR_PIXDEPTH Pixel depth not supported.

BiBufferAlloc BitFlow SDK

SDK-5-4 BitFlow, Inc. Version G.8

The following shows an example of how to use BiBufferAlloc:

BiBrdOpen// open board
BiDiskParamRead// Get parameters to pass to BiBufferAlloc
BiBufferAlloc// Allocate memory
BiDiskBufRead// Read in image to memory

// Display and/or process image

BiBufferFree// De-allocate memory
BiBrdClose// Close the board

After a successful call to BiBufferAlloc the returned pBufArray pointer will be used for
all further accesses to the newly allocated memory.

BiBufferFree should be called to free up resources used by BiBufferAlloc.

BufIn Memory Functions BiBufferAssign

Version G.8 BitFlow, Inc. SDK-5-5

5.4 BiBufferAssign

Prototype BIRC BiBufferAssign(Bd Board, PBIBA pBufArray, PBU32 *pMemArray, BFU32
NumBuffers)

Description This function assigns memory allocated by the user to BufIn.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

*pMemArray

A pointer to an array of pointers that points to each buffer that has been allocated by
the user.

NumBuffers

The number of buffers that have been allocated by the user.

Returns

Comments For this function memory needs to be allocated by the user. With memory allocated,
an array of pointers pointing to each frame will need to be created. The array of point-
ers will be passed to this function via the pMemArray parameter. This function will
then assign the array of pointers to BufIn’s array of pointers. The function will return
BufIn’s array of pointers via the pBufArray parameter. It is the users responsibility to
allocate and set up the array of pointers correctly.

After a successful call to BiBufferAssign the returned pBufArray pointer will be used
for all further accesses to the newly assigned memory.

BiBufferUnassign should be called to free up resources used by BiBufferAssign. The
user will need to free the memory that they have allocated for the buffers and array of
pointers.

BI_OK If successful.

BI_ERROR_MEM_SIZE The frame size is larger than the size of the buffer
allocated in memory.

BI_ERROR_ASSIGN_PIX-
DEPTH

Pixel depth not supported.

BI_ERROR_NO_MEM_POINT Memory could not be allocated for BufIn's array
of pointers.

BiBufferAssign BitFlow SDK

SDK-5-6 BitFlow, Inc. Version G.8

As of BitFlow SDK version 4.5 BiBufferAssign supports allocation of non-sequential
buffers in memory. Previous version of the SDK do not support non-sequential buffers
in memory.

BufIn Memory Functions BiBufferFree

Version G.8 BitFlow, Inc. SDK-5-7

5.5 BiBufferFree

Prototype BIRC BiBufferFree(Bd Board, PBIBA pBufArray)

Description Frees the memory associated with pBufArray.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function frees the resources created by BiBufferAllocCam and BiBufferAlloc.

BI_OK In all cases.

BiBufferUnassign BitFlow SDK

SDK-5-8 BitFlow, Inc. Version G.8

5.6 BiBufferUnassign

Prototype BIRC BiBufferUnassign(Bd Board, PBIBA pBufArray)

Description Un-assigns resources created by BiBufferAssign.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function frees the resources created by BiBufferAssign.

BI_OK In all cases.

BufIn Memory Functions BiBufferArrayGet

Version G.8 BitFlow, Inc. SDK-5-9

5.7 BiBufferArrayGet

Prototype BIRC BiBufferArrayGet(Bd Board, PBIBA pBufArray, PBFU32 **BufferArray)

Description Returns a pointer to the array of buffer pointers.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

**BufferArray

A pointer to the array of buffer pointers.

Returns

Comments With the return of this function, the user can then access the buffers through the
BufferArray parameter. BufferArray will point to an array of pointers, each one point-
ing to each of the buffers that have been allocated.

See example “BiSeqSimpleDisp.c” to see BiBufferArrayGet be used.

BI_OK In all cases.

BiBufferClear BitFlow SDK

SDK-5-10 BitFlow, Inc. Version G.8

5.8 BiBufferClear

Prototype BIRC BiBufferClear(Bd Board, PBIBA pBufArray)

Description Clears all buffer’s contents by writing zeros to all buffers.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

Returns

Comments This function clears all image data from every buffer allocated by filling each buffer
with zero data. Buffers must be allocated or assinged with the BiBufferAlloc, BiBuffer-
AllocCam or BiBufferAssign functions before calling this function.

BI_OK In all cases.

BufIn Memory Functions BiBufferAllocAlignedCam

Version G.8 BitFlow, Inc. SDK-5-11

5.9 BiBufferAllocAlignedCam

Prototype BIRC BiBufferAllocAlignedCam(Bd Board, PBIBA pBufArray, BFU32 NumBuffers,
BFSIZET Alignment)

Description Allocates memory for the number of buffers specified by parameter NumBuffers on
a specified alignment boundary. The buffers are the correct size for the camera cur-
rently attached to the board.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

NumBuffers

The number of buffers to allocate.

Alignment

The alignment value, which must be an integer power of 2.

Returns

Comments This function allocates memory for NumBuffers number of buffers. The buffers are
the correct size for the camera currently attached to board pointed to by handle
board, and will be on a alignment boundary specified by Alignment. An array of
pointers to the buffers is returned in pBufArray. After a successful call to BiBufferAl-
locCam the returned pBufArray pointer will be used for all further accesses to the
newly allocated memory.

BiBufferFree should be called to free up resources used by BiBufferAllocAlignedCam.

BI_OK If successful.

BI_ERROR_CAM_NO_MEM_
AVAIL

Lack of memory for buffer allocation. Reduce
number of buffers.

BI_ERROR_CAM_FRAMESIZE Error in inquiring frame size for memory alloca-
tion.

BI_ERROR_CAM_STACK_MEM Lack of memory for error stack.

BI_ERROR_CAM_BUFFERS_
NUM

There must be at least two buffers to allocate.

BI_ERROR_CAM_PIXDEPTH Pixel depth not supported.

BI_ERROR_CAM_UNKNOWN Undefined error.

BiBufferAllocAligned BitFlow SDK

SDK-5-12 BitFlow, Inc. Version G.8

5.10 BiBufferAllocAligned

Prototype BIRC BiBufferAllocAligned(Bd Board, PBIBA pBufArray, BFU32 XSize, BFU32 YSize,
BFU32 PixDepth, BFU32 NumBuffers, BFSIZET Alignment)

Description Allocates memory for the number of buffers specified by parameter NumBuffers on
a specified alignment boundary. The buffers size is determined by parameters Xsize,
YSize and PixDepth.

Parameters Board

Board to handle.

pBufArray

A returned pointer to a structure that holds all acquisition information.

XSize

Width of image in pixels.

YSize

Height of image in lines.

PixDepth

Depth of pixels in bits.

NumBuffers

The number of buffers to allocate.

Alignment

The alignment value, which must be an integer power of 2.

Returns

BI_OK If successful.

BI_ERROR_NO_MEM_AVAIL Lack of memory for buffer allocation. Reduce
number of buffers.

BI_ERROR_FRAMESIZE Error in inquiring frame size for memory allo-
cation.

BI_ERROR_STACK_MEM Lack of memory for error stack.

BI_ERROR_BUFFERS_NUM There must be at least two buffers to allocate.

BI_ERROR_PIXDEPTH Pixel depth not supported.

BufIn Memory Functions BiBufferAllocAligned

Version G.8 BitFlow, Inc. SDK-5-13

Comments This function provides a means of allocating memory, on a alignment boundary, for
bufin when the camera file is not available and BiBufferAllocAlignedCam can not be
used. This is the case when reading a saved image from disk. When reading a image
from disk, the camera file is independent to this operation.

The following shows an example of how to use BiBufferAllocAligned:

BiBrdOpen// open board
BiDiskParamRead// Get parameters for BiBufferAllocAligned
BiBufferAllocAligned// Allocate memory
BiDiskBufRead// Read in image to memory

// Display and/or process image

BiBufferFree// De-allocate memory
BiBrdClose// Close the board

After a successful call to BiBufferAllocAligned the returned pBufArray pointer will be
used for all further accesses to the newly allocated memory.

BiBufferFree should be called to free up resources used by BiBufferAllocAligned.

BiBufferAllocAligned BitFlow SDK

SDK-5-14 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-6-1

BufIn Sequence Capture Management

Chapter 6

6.1 Introduction

This group of functions will provide the means to manage a sequence capture applica-
tion. The functions in this chapter will allow the user to overwrite the default settings of
BiSeqAqSetup, give the ability to wait for the sequence to complete, allow the user to
issue commands, for instance stop acquisition, check error status, notify when a frame has
been acquired and what frame is currently being acquired.

BiSeqParameters BitFlow SDK

SDK-6-2 BitFlow, Inc. Version G.8

6.2 BiSeqParameters

Prototype BIRC BiSeqParameters(Bd Board, PBIBA pBufArray, BFU32 StartFrame, BFU32
NumFrames, BFU32 SkipFrames)

Description Modifies the default behavior of the sequence capture system.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

StartFrame

The first buffer to start acquiring into.

NumFrames

The number of frames to acquire.

SkipFrames

The number of frames to skip between captured images.

Returns

Comments This function is used to modify the default behavior of the sequence capture system.
By default, after a call to BiSeqAqSetup, acquisition will being capturing into the first
buffer and capture every frame until all the buffers are full. BiSeqParameters can spec-
ify which buffer is to be the first, how many frames are to be acquired, how many
frames are to be skipped between captures.

BI_OK If successful.

BI_ERROR_START_INVALID Start frame is greater than number of buffers
allocated.

BI_ERROR_TOMANY_FRAMES Number of frames to collect is greater then buf-
fers allocated.

BI_ERROR_START_COMBO Start frame plus the number of frames is
greater than buffers allocated.

BI_ERROR_NUM_FRAMES Must acquire at least 2 frames for sequence
capture.

BufIn Sequence Capture Management BiSeqWaitDone

Version G.8 BitFlow, Inc. SDK-6-3

6.3 BiSeqWaitDone

Prototype BIRC BiSeqWaitDone(Bd Board, PBIBA pBufArray, BFU32 TimeOut)

Description Does an efficient wait for the sequence to be completely captured.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

TimeOut

Number of milliseconds to wait for the sequence to be acquired before returning with
a time-out error. Set to INFINITE to never time-out.

Returns

Comments This function efficiently waits for the sequence to be completed. If the sequence is not
complete by the time specified by the TimeOut parameter, the function returns with
BI_ERROR_WAIT_TIMEOUT. The TimeOut parameter is in milliseconds or can be
INFINITE to never time-out. This function also returns if the sequence capture is killed,
aborted or stopped by the BiSeqControl function.

BI_OK If successful.

BI_ERROR_WAIT_TIME-
OUT

Timed out while waiting for sequence acquisition

BI_ERROR_WAIT_FAILED WaitForSingleObject failed.

BI_AQ_ABORTED Sequence acquisition was aborted.

BI_AQ_STOPPED Sequence acquisition was stopped.

BiSeqControl BitFlow SDK

SDK-6-4 BitFlow, Inc. Version G.8

6.4 BiSeqControl

Prototype BIRC BiSeqControl(Bd Board, PBIBA pBufArray, BFU32 Command, BFU32
Options)

Description Controls the sequence acquisition system.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Command

Acquisition command to initiate:

BISTART - Starts sequence acquisition.
BISTOP - Stops sequence acquisition after the current frame has been

acquired.
BIPAUSE - Pauses sequence acquisition after the current frame has been

acquired.
BIRESUME - Resumes sequence acquisition after a pause command.
BIABORT - Stops sequence acquisition immediately. Does not wait for the

current frame to be acquired.

Options

Sequence control options for sequence capture are:

BiWait - wait for the current command to complete.
BiAsync - as soon as the command is issued return.

Returns

BI_OK If successful.

BI_ERROR_CNTL_UNKNOWN Unknown command parameter being passed
to function.

BI_ERROR_START_TIMEOUT Timed out waiting for acquisition to start.

BI_ERROR_STOP_TIMEOUT Timed out waiting for acquisition to stop.

BI_ERROR_PAUSE_TIMEOUT Timed out waiting for acquisition to pause.

BI_ERROR_RESUME_TIMEOUT Timed out waiting for acquisition to resume.

BI_ERROR_ABORT_TIMEOUT Timed out waiting for acquisition to abort.

BufIn Sequence Capture Management BiSeqControl

Version G.8 BitFlow, Inc. SDK-6-5

Comments This function can only be called after a successful call to BiSeqAqSetup.

BI_ERROR_INVALID_CMD_SEQ is a error that will be returned if there is a invalid
sequence of commands. An example of that would be if the stop command was
called twice in a row. The first stop command would stop acquisition and the second
stop command would return this error because acquisition has already been stopped.
The following are valid command sequences: A start then stop or abort. Two of the
same commands issued one after the other, i.e. pause after a pause. A start after any-
thing other than an stop or abort. A pause after anything but a start or resume.

It is recommended to call this function with an Options parameter of BiWait. BiAsync
should only be used when BiWait cannot be used.

BI_ERROR_CICONAQCMD_
FREEZE

The CiConAqCommand failed trying to issue a
freeze.

BI_ERROR_CICONAQSTATUS Could not determine the acquisition status.

BI_ERROR_INVALIDAQSTATUS The acquisition status was an invalid type.

BI_ERROR_INVALID_CMD_SEQ A invalid sequence of control commands was
used. For example, a stop was issued after a
stop.

BI_ERROR_CICONAQCMD_
ABORT

The CiConAqCommand failed trying to issue a
abort.

BiSeqErrorWait BitFlow SDK

SDK-6-6 BitFlow, Inc. Version G.8

6.5 BiSeqErrorWait

Prototype BIRC BiSeqErrorWait(Bd Board, PBIBA pBufArray)

Description Efficiently waits for an error to occur. Returns immediately if one has occurred since
the function was last called.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function will return only when an acquisition error has occurred. This function is
designed to be in a separate thread that needs to be woken up whenever an error
occurs. Once woken up, the error thread can take the appropriate action. This func-
tion will let the user know that a acquisition error has occurred, the user will then have
to check the error stack with the BiSeqErrorCheck and BiErrorShow functions to view
the specific error. This function will end when the system is cleaned up through the
calling of the BiSeqCleanUp function. When BiSeqCleanUp ends BiSeqErrorWait a
BI_CLEANUP warning will be returned. Warnings can be ignored by comparing the
returned value to BI_WARNINGS. If the returned value is greater than BI_WARNINGS
the return is a warning. If the returned value is less than BI_WARNINGS the return is a
error.

BI_OK If successful.

BI_CLEANUP Warning that BiSeqCleanUp killed the BiSeqError-
Wait function.

BI_ERROR_ACQUISITION A acquisition error has occurred, check the error
stack for the specific error.

BufIn Sequence Capture Management BiSeqErrorCheck

Version G.8 BitFlow, Inc. SDK-6-7

6.6 BiSeqErrorCheck

Prototype BIRC BiSeqErrorCheck(Bd Board, PBIBA pBufArray)

Description Checks the error stack for any errors that have occurred.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function checks to see if any acquisition errors have occurred. It performs a simi-
lar function to BiSeqErrorWait except that it only checks for errors, it does not wait for
an error. This function does not require the use of a separate error thread. For single
threaded applications, this function can be called from time to time to check for error
conditions. If no errors are on the error stack BI_OK will be returned, else the error will
be returned. To view the error, pass the returned value to the BiErrorShow function as
follows:

Error = BiSeqErrorCheck(Board, pBufArray);
if (Error != BI_OK) BiErrorShow(Board, Error);

BI_OK If no errors have occurred.

The error on the error
stack.

If an error has occurred.

BiSeqStatusGet BitFlow SDK

SDK-6-8 BitFlow, Inc. Version G.8

6.7 BiSeqStatusGet

Prototype BIRC BiSeqStatusGet(Bd Board, PBIBA pBufArray, PBFU32 Frame)

Description Checks to see what frame is currently being acquired

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Frame

The number of the frame currently being acquired.

Returns

Comments This function checks to see what frame is currently being acquired and returns the
frame number on parameter Frame.

BI_OK In all cases.

BufIn Sequence Capture Management BiSeqWaitDoneFrame

Version G.8 BitFlow, Inc. SDK-6-9

6.8 BiSeqWaitDoneFrame

Prototype BIRC BiSeqWaitDoneFrame(Bd Board, PBIBA pBufArray, BFU32 TimeOut)

Description Efficiently waits for a frame to be acquired. Once a complete frame has been acquired
the function returns.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

TimeOut

Number of milliseconds to wait for the sequence to be acquired before returning with
a time-out error. Set to INFINITE to never time-out.

Returns

Comments This function efficiently waits for frames to be acquired into memory. This function will
wait until a frame has been acquired or BiSeqCleanUp has been called. BiSeq-
CleanUp ends this function with a return of BI_CANCEL_FRAME_DONE warning.
Warnings can be ignored by comparing the returned value to BI_WARNINGS. If the
returned value is greater than BI_WARNINGS the return is a warning. If the returned
value is less than BI_WARNINGS the return is a error.

BI_OK A frame has been acquired.

BI_ERROR_FRAME_TIME-
OUT

Timed out waiting for a frame.

BI_ERROR_FRAME_FAILED Error while waiting for frame.

BI_CANCEL_FRAME_
DONE

BiSeqCleanUp killed the BiSeqWaitDoneFrame func-
tion.

BI_FRAME_STOP Sequence acquisition was stopped.

BI_FRAME_ABORT Sequence acquisition was aborted.

BiSeqBufferStatus BitFlow SDK

SDK-6-10 BitFlow, Inc. Version G.8

6.9 BiSeqBufferStatus

Prototype BIRC BiSeqBufferStatus(Bd Board, PBIBA pBufArray, BFU32 BufferNumber, PBiS-
eqInfo BufferInfo)

Description Returns the frame count and time stamp for a specific buffer.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

BufferNumber

The buffer that information will be returned for.

BufferInfo

A structure that contains the information for the buffer BufferNumber. The structure
contains the frame count and the time stamp for the last image acquired into the buf-
fer.

Returns

Comments This function returns information about a buffer specified by the parameter Buffer-
Number. BufferInfo is the return structure that contains the buffer information. The
structure contains the frame count and time stamp of the buffer.

The frame count will be the number of frames acquired including a partial frame from
a overflow or hardware exception. The frame count can be used to determine which
frame was missed if an overflow or hardware exception occurred during acquisition.
An example would be the acquisition of frame number 100, during acquisition for
frame number 101 a overflow occurs. When the overflow occurs, the acquisition will
be reset and the partial image will be overwritten with the new one. The frame count
will also be incriminated, indicating that another frame has been acquired. The next
count will be 102 for the newly acquired frame. The user will see a frame count of 100,
102, 103, etc. The gap will show that an overflow or hardware exception occurred on
frame 101.

The time stamp includes the year, year day, month, day, hour, minute, second and
milli-second of the time that the frame finishes DMA and is in memory.

BI_OK If no errors have occurred.

BI_ERROR_BUF_STAT BiSeqAqSetup needs to be called before this func-
tion can be called.

BufIn Sequence Capture Management BiSeqBufferStatusClear

Version G.8 BitFlow, Inc. SDK-6-11

6.10 BiSeqBufferStatusClear

Prototype BIRC BiSeqBufferStatusClear(Bd Board, PBIBA pBufArray)

Description Initialize the buffer information to zero.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function initializes the frame count and time stamp information for all buffers to
zero.

BI_OK In all cases.

BiSeqBufferStatusClear BitFlow SDK

SDK-6-12 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-7-1

BufIn Circular Capture Management

Chapter 7

7.1 Introduction

This group of functions will provide the means to manage a circular capture application.
The functions in this chapter will allow the user to overwrite the default settings of BiCir-
cAqSetup, allow the user to issue commands, for instance stop acquisition, check error
status, notify when a frame has been acquired and what frame is currently being acquired.

BiCirControl BitFlow SDK

SDK-7-2 BitFlow, Inc. Version G.8

7.2 BiCirControl

Prototype BIRC BiCirControl(Bd Board, PBIBA pBufArray, BFU32 Command, BFU32 Options)

Description Controls the circular acquisition system.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Command

Acquisition command to initiate:

BISTART - Starts circular acquisition.
BISTOP - Stops circular acquisition after the current frame has been

acquired.
BIPAUSE - Pauses circular acquisition after the current frame has been

acquired.
BIRESUME - Resumes circular acquisition after a pause command.
BIABORT - Stops circular acquisition immediately. Does not wait for the

current frame to be acquired.

Options

Circular control options for circular capture are:

BiWait - wait for the current command to complete.
BiAsync - as soon as the command is issued return.

Returns

BI_OK If successful.

BI_ERROR_CIR_CNTL_UNKNOWN Unknown command parameter being
passed to function

BI_ERROR_CIR_RESUME_P Tried to issue a resume after a start.
Resume should be used after a pause to
begin acquisition again.

BI_ERROR_CIR_PAUSE Tried to pause while acquisition is stopped
or aborted. Pause can only be used while
acquiring.

BI_ERROR_CIR_RESUME Tried to issue a resume after a stop or
abort. Resume should be used after a
pause to begin acquisition again.

BufIn Circular Capture Management BiCirControl

Version G.8 BitFlow, Inc. SDK-7-3

Comments This function can only be called after a successful call to BiCircAqSetup.

BI_ERROR_INVALID_CMD_SEQ is a error that will be returned if there is a invalid
sequence of commands. An example of that would be if the stop command was
called twice in a row. The first stop command would stop acquisition and the second
stop command would return this error because acquisition has already been stopped.
The following are valid command sequences: A start then stop or abort. Two of the
same commands issued one after the other, i.e. pause after a pause. A start after any-
thing other than an stop or abort. A pause after anything but a start or resume.

BI_ERROR_CIR_PAUSE_START Tried to issue a start from a pause. Use
resume to continue acquisition after a
pause.

BI_ERROR_CIR_START_TIMEOUT Timed out waiting for acquisition to start.

BI_ERROR_CIR_STOP_TIMEOUT Timed out waiting for acquisition to stop.

BI_ERROR_CIR_PAUSE_TIMEOUT Timed out waiting for acquisition to pause.

BI_ERROR_CIR_RESUME_TIMEOUT Timed out waiting for acquisition to
resume.

BI_ERROR_CIR_ABORT_TIMEOUT Timed out waiting for acquisition to abort.

BI_ERROR_CIR_CICONAQCMD_
FREEZE

The CiConAqCommand failed trying to
issue a freeze.

BI_ERROR_CIR_CICONAQSTATUS Could not determine the acquisition status.

BI_ERROR_CIR_INVALIDAQSTATUS The acquisition status was an invalid type.

BI_ERROR_CIR_INVALID_CMD_SEQ A invalid sequence of control commands
was used. For example, a stop was issued
after a stop.

BI_ERROR_CIR_CICONAQCMD_
ABORT

The CiConAqCommand failed trying to
issue a abort.

BiCirErrorWait BitFlow SDK

SDK-7-4 BitFlow, Inc. Version G.8

7.3 BiCirErrorWait

Prototype BIRC BiCirErrorWait(Bd Board, PBIBA pBufArray)

Description Efficiently waits for a Bi error to occur. Returns immediately if one has occurred since
the function was last called.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function will return only when a circular acquisition error has occurred. This func-
tion is designed to be in a separate thread that needs to be woken up whenever a
error occurs. Once woken up, the error thread can take the appropriate action. This
function will let the user know that a acquisition error has occurred, the user will then
have to check the error stack with the BiCirErrorCheck and BiErrorShow functions to
view the specific error. This function will end when the system is cleaned up through
the BiCircCleanUp function. When BiCircCleanUp ends BiCirErrorWait a BI_CIR_
CLEANUP warning will be returned. Warnings can be ignored by comparing the
returned value to BI_WARNINGS. If the returned value is greater than BI_WARNINGS
the return is a warning. If the returned value is less than BI_WARNINGS the return is a
error.

BI_OK Error has occurred.

BI_CIR_CLEANUP Warning that BiCircCleanup killed the BiCirError-
Wait function.

BI_ERROR_CIR_ACQUISI-
TION

A acquisition error has occurred, check the error
stack for the specific error.

BufIn Circular Capture Management BiCirErrorCheck

Version G.8 BitFlow, Inc. SDK-7-5

7.4 BiCirErrorCheck

Prototype BIRC BiCirErrorCheck(Bd Board, PBIBA pBufArray)

Description Checks the Bufin error stack for any errors that have occurred.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Returns

Comments This function checks to see if any acquisition errors have occurred. It performs a simi-
lar function to BiCirErrorWait except that it only checks for errors, it does not wait for
an error. This function does not require the use of a separate error thread. For single
threaded applications, this function can be called from time to time to check for error
conditions.

Calling this function will automatically remove an error from the Bufin error stack.

BI_OK If no errors have occurred.

The error on the error
stack.

If an error has occurred.

BiCirWaitDoneFrame BitFlow SDK

SDK-7-6 BitFlow, Inc. Version G.8

7.5 BiCirWaitDoneFrame

Prototype BIRC BiCirWaitDoneFrame(Bd Board, PBIBA pBufArray, BFU32 Timeout, PBiCirHan-
dle CirHandle)

Description Waits until there is a newly filled buffer. Returns when the buffer is filled, stopped,
aborted, error occurs or when the clean up function is called.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Timeout

Number of milliseconds to wait for the signal to occur before returning with a time-
out error. Set to INFINITE to never time-out.

CirHandle

Returned pointer to the circular handle of the buffer that was just captured. The han-
dle includes information about the frame that was captured including, a pointer to the
image data buffer, the frame count, the time stamp and the buffer number.

Returns

Comments This function efficiently waits until there is a newly filled buffer. Every time a buffer is
filled, it is added to the buffer queue. Whenever this function is called, the oldest buf-
fer in the queue is removed. The only time this function does not return, is if the error
mode is BiErStop and the system is out of buffers marked BIAVAILABLE. When a buf-
fer is removed from the queue, its status changes from BIFRESH to BINEW. Once a
buffer has BINEW status, it is the responsibility of the application to change the buf-
fers status to BIAVAILABLE. There is no difference between BIFRESH and BINEW sta-
tus except that the system acknowledges the buffer has been removed from the

BI_OK If successful.

BI_CIR_STOPPED Warning that circular acquisition has been
stopped.

BI_CIR_ABORTED Warning that circular acquisition has been
aborted.

BI_ERROR_CIR_WAIT_TIME-
OUT

Wait for multiple objects timed out.

BI_ERROR_CIR_WAIT_
FAILED

Wait for multiple objects failed.

BI_ERROR_QEMPTY The queue is empty.

BufIn Circular Capture Management BiCirWaitDoneFrame

Version G.8 BitFlow, Inc. SDK-7-7

queue. The Timeout parameter determines how long the function will wait before
returning a time-out error. This parameter is given in milliseconds and can be set to
INFINITE to never time-out.

The CirHandle structure provides information about the frame that was just acquired.
The following entries make up the CirHandle structure:

pBufData - A pointer to the buffer in memory where the image has been acquired.

FrameCount - The number of frames that have been acquired. This number includes
frames that have been missed due to overflows. If there is a gap in the frame count
the number missing is the frame that is missing. An example would be a frame count
of 1, 2, 4, 5,...n. In this case frame 3 overflowed and was overwritten by frame number
4.

TimeStamp - The time that the image finished acquisition into memory. This time is
taken from the clock on the host computer. The time stamp is accurate to +/- 20mS.

HiResTimeStamp - A high-resolution time stamp of when the image finished acquisi-
tion into memory. This time stamp uses the CPU clock to determine time. Hence, the
faster the CPU the more accurate the time stamp. Using a modern day CPU the time
stamp should be accurate to at least +/- 1mS. It is recommended that the user bench-
mark the time stamp for their particular system.

BufferNumber - The buffer number that the image was acquired into.

pNode - A pointer to the node in the list of buffers.

BiCirStatusSet BitFlow SDK

SDK-7-8 BitFlow, Inc. Version G.8

7.6 BiCirStatusSet

Prototype BIRC BiCirStatusSet(Bd Board, PBIBA pBufArray, BiCirHandle CirHandle, BFU32
Status)

Description Sets the status for the CirHandle returned by BiCirWaitDoneFrame.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

CirHandle

Pointer to the circular handle of a buffer returned by BiCirWaitDoneFrame.

Status

The status to set the buffer too. The only options to the user are BIAVAILABLE and
BIHOLD. All other statuses are marked by the circular system. If a buffer is marked
BIAVAILABLE it can then be acquired into by the circular system. If a buffer is marked
BIHOLD, it will not be acquired into until the user marks it as BIAVAILABLE.

Returns

BI_OK If successful.

BI_ERROR_MARK_STAT Tried to change to a status to something
other than BIAVAILABLE and BIHOLD.

BI_ERROR_MARK_HOLD Unable to change buffer status to hold. Cur-
rent buffer being acquired into was to close
to the hold buffer to safely change status.

BI_ERROR_CHAIN_DISABLE An error occurred in the low level driver
while trying to hold a buffer.

BI_ERROR_CHAIN_ENABLE An error occurred in the low level driver
while trying to make a buffer available.

BI_ERROR_AVAIL_QUEUE_FULL The buffer could not be stored on the avail-
able queue because it was full.

BI_ERROR_ON_AVAIL_QUEUE Unable to change buffer status, because the
buffer is on the available queue.

BI_ERROR_STATUS_STATE Couldn’t determine the current status of the
buffer.

BufIn Circular Capture Management BiCirStatusSet

Version G.8 BitFlow, Inc. SDK-7-9

Comments This function changes the status of the buffer designated by CirHandle. The status
can be changed to BIAVAILABLE or BIHOLD only. An error will be returned if the sta-
tus is anything but BIAVAILABLE or BIHOLD.

This function is thread safe, meaning that if this function is called from two different
threads only one thread will be allowed into the function at a time. The first thread to
call the function will fully execute the function before the call from the second thread
is allow to enter the function. This is helpful for the user because there is no need for
the user to provide thread synchronization (mutex, semaphore, ...) when using this
function in two or more threads.

When holding a buffer or making a buffer available from a hold, the system compares
the buffer number to change the status of, to the buffer the framegrabber is DMAing
too. If the framegrabber is currently DMAing to the buffer the user wants to change
the status of, or the two buffers behind the buffer the user want to change the status
of, the BI_ERROR_MARK_HOLD error will be returned. Otherwise the buffer’s status
will be changed.

BI_ERROR_BUFFER_RANGE Too many buffers are being held. Could not
determine a safe buffer range where the buf-
fer can be held.

BI_ERROR_STATUS_MUTEX_
TIMEOUT

Timed out waiting for the buffer status
mutex.

BI_ERROR_STATUS_MUTEX_
ABANDONED

The buffer status mutex was not released
properly.

BI_ERROR_RAVEN_HOLD Holding buffers with the Raven is not sup-
ported.

BiCirStatusGet BitFlow SDK

SDK-7-10 BitFlow, Inc. Version G.8

7.7 BiCirStatusGet

Prototype BIRC BiCirStatusGet(Bd Board, PBIBA pBufArray, BiCirHandle CirHandle, PBFU32
Status)

Description Returns the current status for the CirHandle returned by BiCirWaitDoneFrame.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

CirHandle

Pointer to the circular handle of a buffer returned by BiCirWaitDoneFrame.

Status

The returned status of the buffer referred to by CirHandle. The returned value can be
one of BIFRESH, BINEW, BIAVAILABLE, BIQUEUED or BIHOLD. A BIFRESH buffer
would be a buffer that was just filled and is fresh to the buffer queue. A BINEW buffer
would be a buffer that has been removed from the buffer queue with the BiCirWait-
DoneFrame function. A buffer that is BIAVAILABLE is a buffer that can be acquired
into by the circular buffer system. A buffer that is marked BIHOLD is a buffer that can
not be acquired into until the user marks it as BIAVAILABLE. A buffer marked
BIQUEUED is on the available queue and will be made available by the circular buffer
system.

Returns

Comments

BI_OK In all cases.

BufIn Circular Capture Management BiCirBufferStatusSet

Version G.8 BitFlow, Inc. SDK-7-11

7.8 BiCirBufferStatusSet

Prototype BIRC BiCirBufferStatusSet(Bd Board, PBIBA pBufArray, BFU32 BufferNumber,
BFU32 Status)

Description Sets the status for the buffer specified by BufferNumber.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

BufferNumber

The number of the buffer to set status.

Status

The status to set the buffer too. The only options to the user are BIAVAILABLE and
BIHOLD. All other statuses are marked by the circular system. If a buffer is marked
BIAVAILABLE it can then be acquired into by the circular system. If a buffer is marked
BIHOLD, it will not be acquired into until the user marks it as BIAVAILABLE.

Returns

BI_OK If successful.

BI_ERROR_MARK_STAT Tried to change to a status to something
other than BIAVAILABLE and BIHOLD.

BI_ERROR_MARK_HOLD Unable to change buffer status to hold. Cur-
rent buffer being acquired into was to close
to the hold buffer to safely change status.

BI_ERROR_CHAIN_DISABLE An error occurred in the low level driver
while trying to hold a buffer.

BI_ERROR_CHAIN_ENABLE An error occurred in the low level driver
while trying to make a buffer available.

BI_ERROR_AVAIL_QUEUE_FULL The buffer could not be stored on the avail-
able queue because it was full.

BI_ERROR_ON_AVAIL_QUEUE Unable to change buffer status, because the
buffer is on the available queue.

BI_ERROR_STATUS_STATE Couldn’t determine the current status of the
buffer.

BiCirBufferStatusSet BitFlow SDK

SDK-7-12 BitFlow, Inc. Version G.8

Comments Please refer to the BiCirStatusSet function for comments. The BiCirStatusSet and
BiCirBufferStatusSet functions are identical except BiCirStatusSet uses the circular
handle and BiCirBufferStatusSet uses the buffer number to determine the buffer that
will have its status change.

BI_ERROR_BUFFER_RANGE Too many buffers are being held. Could not
determine a safe buffer range where the buf-
fer can be held.

BI_ERROR_STATUS_MUTEX_
TIMEOUT

Timed out waiting for the buffer status
mutex.

BI_ERROR_STATUS_MUTEX_
ABANDONED

The buffer status mutex was not released
properly.

BI_ERROR_RAVEN_HOLD Holding buffers with the Raven is not sup-
ported.

BI_ERROR_CIR_BAD_BUFFER_
NUM

Trying to hold a buffer number that doesn’t
exist.

BufIn Circular Capture Management BiCirBufferStatusGet

Version G.8 BitFlow, Inc. SDK-7-13

7.9 BiCirBufferStatusGet

Prototype BIRC BiCirBufferStatusGet(Bd Board, PBIBA pBufArray, BFU32 BufferNumber,
PBFU32 Status)

Description Returns the current status for the buffer specified by BufferNumber.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

BufferNumber

The buffer to get the status of.

Status

The returned status of the buffer referred to by BufferNumber. The returned value
can be one of BIFRESH, BINEW, BIAVAILABLE, BIQUEUED or BIHOLD. A BIFRESH buf-
fer would be a buffer that was just filled and is fresh to the buffer queue. A BINEW buf-
fer would be a buffer that has been removed from the buffer queue with the
BiCirWaitDoneFrame function. A buffer that is BIAVAILABLE is a buffer that can be
acquired into by the circular buffer system. A buffer that is marked BIHOLD is a buffer
that can not be acquired into until the user marks it as BIAVAILABLE. A buffer marked
BIQUEUED is on the available queue and will be made available by the circular buffer
system.

Returns

Comments

BI_OK In all cases.

BI_ERROR_CIR_BUFFER_
NUM

Tried getting the status of a buffer that doesn’t
exist.

BiBufferQueueSize BitFlow SDK

SDK-7-14 BitFlow, Inc. Version G.8

7.10 BiBufferQueueSize

Prototype BIRC BiBufferQueueSize(Bd Board, PBIBA pBufArray, PBFU32 NumFrames)

Description Returns the number of buffers stored on the buffer queue.

Parameters Board

Board to handle.

pBufArray

A pointer to a structure that holds all acquisition information.

NumFrames

The number of buffers stored on the buffer queue.

Returns

Comments This function returns the number of buffers stored on the buffer queue. As buffers are
acquired, the buffer count increments. Everytime the user receives a buffer from BiCir-
WaitDoneFrame, the count decrements.

BI_OK If successful.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-8-1

BufIn Trigger Functions

Chapter 8

8.1 Introduction

The trigger functions provide the ability to inquire the trigger mode of the current camera
file, to change the trigger mode from software, and to force a software trigger.

BiTrigModeSet BitFlow SDK

SDK-8-2 BitFlow, Inc. Version G.8

8.2 BiTrigModeSet

Prototype BIRC BiTrigModeSet(Bd Board, BFU32 TriggerMode, BFU32 TriggerPolarity)

Description Sets the trigger mode and polarities for both acquisition engines.

Parameters Board

Handle to board.

TriggerMode

The trigger modes can be one of the following:

BiTrigFreeRun - no trigger is used, board free runs.
BiTrigContinuousData - for continuous data sources.
BiTrigOneShot - one shot mode for asynchronously resettable cameras.

DMA engines J and K are run by the same trigger(s).
BiTrigOneShotJbyAandKbyB - one shot mode for asynchronously resetta-

ble cameras. DMA engine J is run by trigger A and engine K by trigger
B.

BiTrigOneShotStartStop - start/stop mode for line scan cameras. DMA
engines J and K are run by the same trigger(s).

BiTrigOnShotSSJbyAandKbyB - start/stop mode for line scan cameras.
DMA engine J is run by trigger A and engine K by trigger B.

BiTrigOneShotStartAStopB - start/stop mode for line scan cameras. Trig-
ger A resets DMA engine J and starts acquiring one frame. Trigger B
will terminate acquisition of the frame.

BiTrigAqCmd - triggered acquired command mode for non-resettable
cameras. DMA engines J and K are run by the same trigger(s).

BiTrigAqCmdJbyAandKbyB - triggered acquired command mode for
non-resettable cameras. DMA engine J is run by trigger A and engine
K by trigger B.

BiTrigAqCmdFreezeCmd - start/stop trigger for non-resettable cameras.
DMA engines J and K are run by the same trigger(s).

BiTrigAqCmdFrzCmdJbyAandKFree - start/stop trigger for non-resettable
cameras. DMA engine J is run by trigger A and engine K free runs.

BiTrigOneShotSelfTrig - self triggering one shot mode.

TriggerPolarity

Polarity for trigger A and B:

BiTrigAssertedHigh - Trigger A and B are asserted on rising edge.
BiTrigAssertedLow - Trigger A and B are asserted on falling edge.
BiTrigAHighBLow - Trigger A is asserted on rising edge, B on falling edge.
BiTrigALowBHigh - Trigger A is asserted on falling edge, B on rising edge.

BufIn Trigger Functions BiTrigModeSet

Version G.8 BitFlow, Inc. SDK-8-3

Returns

Comments This function works in conjunction with the camera configurations files. It is important
to understand that not all cameras support all triggering modes and not all trigger
modes are supported by a particular board. Usually a particular camera will only sup-
port one or two triggering modes. Furthermore, a different camera configuration file
is usually needed for each triggering mode. For example, a camera will almost always
have a free running configuration file, useful for set up and offline testing. A camera
may also have a one shot file, which would be used in time-critical applications. You
cannot usually put the board, set up by the free running file, into one shot mode
because the latter mode requires special triggering signals to be sent to the camera.
However, you can put a board set up by a one shot file, into self triggering one shot
mode. This is useful for camera set up and system debugging.

This function only controls how the board is vertically triggered. Vertical triggers
cause the board to acquire a whole frame from a area camera or a number of lines
from a line scan camera.

This function is only needed to change from one type of trigger mode to another on
the fly. If the camera file is set up for one-shot mode, there is no need to set the trig-
ger mode to one-shot. By default the Bi API will acquire from the camera based on
what the camera file is set for. If the user wants to change the trigger mode from that
of the camera file, this function can be used to do that.

See Table 8-1 and Table 8-2 for how the various triggering modes work on the Road
Runner/R3 and R64 respectively.

BI_OK If successful.

BI_ERROR_UNKNOWN_TRIG_
SET

Unknown trigger mode or polarity parameter

BI_ERROR_BOARDPTR_TRIG_
SET

Bad board pointe.

BI_ERROR_BAD_BOARD_PARA Parameter for function valid but not for the
specified board.

Table 8-1 Trigger Modes Road Runner/R3

Trigger Modes Trigger A asserts Trigger B asserts

BiTrigFreeRun No effect No effect

BiTrigContinuousData Engine J starts acquiring
continuous data

N/A

BiTrigOneShot Engine J resets its cam-
era and acquires one
frame

No effect

BiTrigOneShotJbyAandKbyB N/A N/A

BiTrigModeSet BitFlow SDK

SDK-8-4 BitFlow, Inc. Version G.8

BiTrigOneShotStartStop Engine J resets its cam-
era and starts acquiring
one frame. Frame is ter-
minated on trigger de-
assertion edge.

No effect

BiTrigOneShotSSJbyAandKbyB N/A N/A

BiTrigOneShotStartAStopB Engine J resets its cam-
era and starts acquiring
one frame

Engine J terminates
acquisition of the
frame

BiTrigAqCmd Engine J command
latches

No effect

BiTrigAqCmdJbyAandKbyB N/A N/A

BiTrigAqCmdFreezeCmd Engine J command
latches

Freeze Issued

BiTrigAqCmdFrzCmdJbyAandK-
Free

N/A N/A

BiTrigOneShotSelfTrig N/A N/A

Table 8-2 Trigger Modes R64

Trigger Modes Trigger A asserts

BiTrigFreeRun No effect

BiTrigContinuousData Engine J starts acquiring
continuous data

BiTrigOneShot Engine J resets its cam-
era and acquires one
frame

BiTrigOneShotJbyAandKbyB N/A

BiTrigOneShotStartStop Engine J resets its cam-
era and starts acquiring
one frame. Frame is ter-
minated on trigger de-
assertion edge.

BiTrigOneShotSSJbyAandKbyB N/A

BiTrigOneShotStartAStopB N/A

BiTrigAqCmd Engine J command
latches

Table 8-1 Trigger Modes Road Runner/R3

Trigger Modes Trigger A asserts Trigger B asserts

BufIn Trigger Functions BiTrigModeSet

Version G.8 BitFlow, Inc. SDK-8-5

BiTrigAqCmdJbyAandKbyB N/A

BiTrigAqCmdFreezeCmd N/A

BiTrigAqCmdFrzCmdJbyAandK-
Free

N/A

BiTrigOneShotSelfTrig No Effect

Table 8-2 Trigger Modes R64

Trigger Modes Trigger A asserts

BiTrigModeGet BitFlow SDK

SDK-8-6 BitFlow, Inc. Version G.8

8.3 BiTrigModeGet

Prototype BIRC BiTrigModeGet(Bd Board, PBFU32 TriggerMode, PBFU32 TriggerPolarity)

Description Gets the current trigger mode and polarities.

Parameters Board

Handle to board.

TriggerMode

Returns the current trigger mode:

BiTrigFreeRun - no trigger is used, board free runs.
BiTrigContinuousData - for continuous data sources.
BiTrigOneShot - one shot mode for asynchronously resettable cameras.

DMA engines J and K are run by the same trigger(s).
BiTrigOneShotJbyAandKbyB - one shot mode for asynchronously resetta-

ble cameras. DMA engine J is run by trigger A and engine K by trigger
B.

BiTrigOneShotStartStop - start/stop mode for line scan cameras. DMA
engines J and K are run by the same trigger(s).

BiTrigOnShotSSJbyAandKbyB - start/stop mode for line scan cameras.
DMA engine J is run by trigger A and engine K by trigger B.

BiTrigOneShotStartAStopB - start/stop mode for line scan cameras. Trig-
ger A resets DMA engine J and starts acquiring one frame. Trigger B
will terminate acquisition of the frame.

BiTrigAqCmd - triggerd acquired command mode for non-resettable cam-
eras. DMA engines J and K are run by the same trigger(s).

BiTrigAqCmdJbyAandKbyB - triggerd acquired command mode for non-
resettable cameras. DMA engine J is run by trigger A and engine K by
trigger B.

BiTrigAqCmdFreezeCmd - start/stop trigger for non-resettable cameras.
DMA engines J and K are run by the same trigger(s).

BiTrigAqCmdFrzCmdJbyAandKFree - start/stop trigger for non-resettable
cameras. DMA engine J is run by trigger A and engine K free runs.

BiTrigOneShotSelfTrig - self triggering one shot mode.

TriggerPolarity

Returns the current trigger polarity:

BiTrigAssertedHigh - Trigger A and B are asserted on rising edge.
BiTrigAssertedLow - Trigger A and B are asserted on falling edge.
BiTrigAHighBLow - Trigger A is asserted on rising edge, B on falling edge.
BiTrigALowBHigh - Trigger A is asserted on falling edge, B on rising edge.

BufIn Trigger Functions BiTrigModeGet

Version G.8 BitFlow, Inc. SDK-8-7

Returns

Comments This function returns the current state of the trigger circuitry. See the function BiTrig-
ModeSet for a complete description of the modes.

BI_OK If successful.

BI_ERROR_BOARDPTR_TRIG_
GET

Unknown Board Type.

BiTrigForce BitFlow SDK

SDK-8-8 BitFlow, Inc. Version G.8

8.4 BiTrigForce

Prototype BIRC BiTrigForce(Bd Board, BFU32 Mode)

Description Performs a software trigger on the specified board.

Parameters Board

Handle to board.

Mode

How to assert the trigger. The following are the only valid means to assert a trigger:

BiTrigAssertTrigA - Trigger A is given a rising edge.
BiTrigAssertTrigB - Trigger B is given a rising edge.
BiTrigDeassertTrigA - Trigger A is given a falling edge.
BiTrigDeassertTrigB - Trigger B is given a falling edge.

Returns

Comments This function triggers the board. The mode parameter can be either asserted or de-
asserted for trigger A and trigger B. De-assertion of a trigger can only be used with
modes that require a stop trigger such as start/stop.

BI_OK If successful.

BI_ERROR_UNKNOWN_
MODE

Unknown Trigger mode.

BI_ERROR_BRD_TRIG_
FORCE

Unknown Board Type.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-9-1

BufIn Disk I/O Functions

Chapter 9

9.1 Introduction

The I/O functions provide the ability to save the images acquired by a sequence or circu-
lar application to disk. The write functions provide the ability to choose which images to
save to disk from sequence or circular application. BufIn supports images being saved to
disk in BMP, TIFF, AVI and RAW data formats.

BufIn provides the ability to read images from disk and into memory. The read function
can only reliably read images saved to disk by BufIn’s write function. BufIn also provides a
helper function for reading images from disk, which will read the pertinent information
from the header of the image. This information should be used in the read function.

BiDiskBufWrite BitFlow SDK

SDK-9-2 BitFlow, Inc. Version G.8

9.2 BiDiskBufWrite

Prototype BIRC BiDiskBufWrite(Bd Board, PBIBA pBufArray, BFU32 FileType, BFU32 FirstBuf-
Number, BFU32 NumBufs, PBFCHAR FileName, BFSIZET FIleNameSize, BFU32
Options)

Description Writes one or more buffers to files on the disk.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

FirstBufNumber

The first buffer to be written to disk. If multiple buffers are to be written to disk, this
will specify the first buffer to be written in the series. If only one buffer is to be written,
this will be the number of that buffer.

NumBufs

The number of buffers to be written. If this parameter is greater than one, the files will
all have the same name with the buffer number appended to the name (e.g.
“image0000.BMP”, “image0001.BMP”, “image0002.BMP”, etc.) The only exception will
be with AVI files, in which the function will produce only one file with NumBufs num-
ber of buffers as a continuous movie.

FileName

The name chosen to save the buffer as. FileName should included the full path and
the extension. The file name prefix will be appended with the file number. For exam-
ple “image.bmp” will be saved as “image000000.bmp”.

 The extension will determine the type of file create. Acceptable extensions are:

avi - Saves a Windows AVI video file (8 or 24-bit pixels only)
bmp - Saves Windows bitmap format file (8 or 24 bits pixels only)
raw - Saves a raw file (binary copy of in-memory image)
tiff - TIFF file format

FileNameSize

The size in bytes of the FileName parameter buffer.

Options

Additional options for saving the buffer to disk.

BufIn Disk I/O Functions BiDiskBufWrite

Version G.8 BitFlow, Inc. SDK-9-3

0 - No additional options used.
SwapRGB - Swap the RGB format to BGR.
Pack32to24Bit - Save 32 bit color XRGB data to 24 bit RGB.
OVERWRITEFILE - If the file already exists, it will be overwritten. Default be-

havior is to return an error and not overwrite an existing file.

Returns

BI_OK If successful.

BI_ERROR_UNKNOWN_FILE-
TYPE

The file type to save as is unknown.

BI_ERROR_FIRSTBUF_INVALID The first buffer is larger that the number of
buffers.

BI_ERROR_NUMBUFS_ZERO The number of buffers must be at least 1.

BI_ERROR_TOO_MANY_BUF-
FERS

Asking for more buffers to save then allo-
cated.

BI_ERROR_OPEN_BMP_FILE File for BMP could not be created.

BI_ERROR_BITMAP_HEADER Error writing BMP header to file.

BI_ERROR_BMP_DATA_WRITE Error writing BMP data to file.

BI_ERROR_OPEN_AVI_FILE Error opening AVI File.

BI_ERROR_CREATE_STREAM Error creating stream.

BI_ERROR_SAVE_OPTIONS Error with dialog box save options.

BI_ERROR_COMPRESS_STREAM Error with compressing the stream.

BI_ERROR_AVI_HEADER Error putting AVI header in the stream.

BI_ERROR_WRITING_AVI_DATA Error writing the AVI stream.

BI_ERROR_OPEN_RAW_FILE Error opening the RAW file.

BI_ERROR_RAW_DATA_WRITE Error writing RAW data to file.

BI_ERROR_OPEN_TIFF_FILE Error opening TIFF file.

BI_ERROR_WRITING_TIFF_
HEADER

Error writing TIFF header.

BI_ERROR_WRITING_TIFF_DATA Error writing TIFF data.

BI_ERROR_SWAPRGB Can only use swap RGB option with color
data.

BI_ERROR_MEM_SWAP_RGB Could not allocate memory for RGB swap
buffer.

BI_ERROR_PACK24BIT Must begin with 32 bit data in order to pack
to 24 bit.

BI_ERROR_BUF_POINTER Invalid buffer pointer

BiDiskBufWrite BitFlow SDK

SDK-9-4 BitFlow, Inc. Version G.8

Comments This function writes one or more buffers to files on the disk. The file type is specified
by the FileType parameter. The file types supported are BMP, TIFF, AVI and RAW
data. The first buffer to be written is specified by the FirstBufNumber parameter. The
number of buffers to be written is specified by the NumBufs parameter. If NumBufs
is greater than one, the files will all have the same name with the buffer number
appended to the name (e.g. “image0000.BMP”, “image0001.BMP” etc.). The only
exception will be with AVI files, which will produce only one file with all the buffers
saved as a continuous movie.

The options parameter is provided to manage saving RGB color data. RGB color data
will be presented to the frame grabber in all different formats based on the camera
and cabling between the camera and framegrabber. To deal with the different format-
ting of color data there are two options, SwapRGB and Pack32to24Bit.

When using SwapRGB as an option, data will be swapped from RGB to BGR or BGR to
RGB, depending on how the data is coming into the framegrabber. This option can
be used if the red and blue colors have been switched not displaying colors correctly.

The Pack32to24Bit option provides a means of saving off 32-bit XRGB data packed as
24 bit RGB data. The majority of color data packed by the framegrabber is packed at
32 bit data with the upper 8 bits zeroed out. This option packs this data to 24 bits. This
can be useful because some applications will not recognize 32-bit color data with the
upper 8 bits being zero. This option provides a means around this problem.

The SwapRGB and Pack32to24Bit options can be ORed together to pack 32-bit data
to 24-bit data and swap red and blue. If neither of the options are to be used, the
options parameter should be 0.

BI_ERROR_FILE_XSIZE Invalid XSize. The XSize must be greater than
zero.

BI_ERROR_FILE_YSIZE Invalid YSize. The YSize must be greater than
zero.

BI_ERROR_WRITE_BITDEPTH Unknown bit depth. The bit depth must be 8,
10, 12, 14, 16, 24, 32, 36, 42 or 48.

BI_ERROR_WRITE_BMP_BIT-
DEPTH

Invalid bit depth for BMP. Bmp supports 8, 24
and 32 bit pixel depths.

BI_ERROR_WRITE_TIF_BITDEPTH Invalid bit depth for tif. Tif supports 8, 10, 12,
14, 16, 24, 32, 36, 42 and 48 bit pixel depths

BI_ERROR_WRITE_AVI_BIT-
DEPTH

Invalid bit depth for AVI. Avi supports 8, 24
and 32 bit pixel depths.

BI_ERROR_WRITE_LOW_MEM Failed allocating memory.

BI_ERROR_OPEN_TEXTFILE Failed opening text file to write raw image
information.

BI_ERROR_RAW_TEXT_WRITE Failed writing raw image information to text
file.

BI_ERROR_UNKNOWN_WRITE Unknown error returned from BFIOWrite
function.

BufIn Disk I/O Functions BiDiskBufWrite

Version G.8 BitFlow, Inc. SDK-9-5

Currently BiDiskBufWrite only supports single image TIFF format.

BiDiskBufRead BitFlow SDK

SDK-9-6 BitFlow, Inc. Version G.8

9.3 BiDiskBufRead

Prototype BIRC BiDiskBufRead(Bd Board, PBIBA pBufArray, BFU32 FirstBufNumber, BFU32
NumBufs, PBFCHAR FileName)

Description Reads images from disk into a buffer array.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

FirstBufNumber

Indicates the first buffer, of the buffer array pBufArray, that the image on the disk will
be read into. If NumBufs is greater than one, images will continue to be read off disk
and into subsequent buffers in pBufArray. In order for multiple images to be read off
the disk, they must have the format, “prefixXXXX.ext”, where XXXX is a sequential
number series.

NumBufs

Specifies the number of buffers to be read into.

FileName

The name of the first image read. Subsequent reads will increment the XXXX portions
of the file name until the number of images, specified by NumBufs, are read.

Returns

BI_OK If successful.

BI_ERROR_NUMBUFS Bad value of NumBufs, must be greater
than zero.

BI_ERROR_BUFFER_SIZE_SMALL Image size is larger that the buffer size
being copied to.

BI_ERROR_FILE_OPEN_READ Error opening file for reading.

BI_ERROR_FILE_READ Error reading file.

BI_ERROR_FILETYPE_READ_IO Unknown File type. File type must be raw,
BMP, tif, or AVI.

BI_ERROR_MEM_TEMP_BUF_
READ_IO

Error allocating memory for temporary
BMP buffer.

BufIn Disk I/O Functions BiDiskBufRead

Version G.8 BitFlow, Inc. SDK-9-7

Comments This function reads images from disk into a buffer array. This function is intended to
read images that have been saved to disk using BiDiskBufWrite. The user must create
the buffers that the images will be read into by allocating memory using the BiBuffer-
Alloc function. The allocation of memory must be done before calling BiDiskBufRead.

This function supports the reading of BMP, AVI, and TIFF. Reading of raw data is not
supported by this function.

BI_ERROR_INVALID_NAME The file name given is invalid, to few char-
acters.

BI_ERROR_PIXDEPTH_READ Pixel depth not supported.

BI_ERROR_DISK_PARAM_READ Error returned by BiDiskParamRead func-
tion.

BI_ERROR_NUMBER_OF_FRAMES Number of frames in AVI file exceeds the
number of buffers.

BI_ERROR_NO_DECOMPRESS Decompressing image to dimensions out-
side of maximum limit.

BI_ERROR_READ_BUF_POINTER Invalid buffer pointer.

BI_ERROR_READ_XSIZE Invalid XSize. The XSize must be greater
than zero.

BI_ERROR_READ_YSIZE Invalid YSize. The YSize must be greater
than zero.

BI_ERROR_RAW_READ Reading a raw image file is not supported.

BI_ERROR_UNKNOWN_READ Unknown error returned from BFIORead
function.

BiDiskParamRead BitFlow SDK

SDK-9-8 BitFlow, Inc. Version G.8

9.4 BiDiskParamRead

Prototype BIRC BiDiskParamRead(Bd Board, PBFCHAR FileName, PBFU32 XSize, PBFU32
YSize, PBFU32 PixDepth, PBFU32 NumFrames)

Description Reads the format and file information from a file on disk.

Parameters Board

Handle to board.

FileName

The name of the file to get information from. The file name should have the format
“Name.ext”.

XSize

Returns the width of the image, specified by FileName, in pixels.

YSize

Returns the height of the image, specified by FileName, in lines.

PixDepth

Returns the depth of a pixel in bits of the image specified by FileName.

NumFrames

Returns the number of frames in the file. This parameter only has meaning for file for-
mats that support multiple images. Currently this parameter will always return 1
unless used with a AVI file.

Returns

BI_OK If successful.

BI_ERROR_FILETYPE_PARAM Unknown file type. File type must be raw,
BMP, tif, or AVI.

BI_ERROR_MEM_TEMP_BUF_
PARAM

Error creating temporary buffer.

BI_ERROR_FILE_OPEN_PARAM Error opening file. Check file name.

BI_ERROR_READFILE_PARAM Error reading in file data.

BI_ERROR_RAW_READ_PARAMS Reading raw file parameters is not sup-
ported.

BI_ERROR_UNKNOWN_PARAM Unknown error returned from BFIORead-
Param.

BufIn Disk I/O Functions BiDiskParamRead

Version G.8 BitFlow, Inc. SDK-9-9

Comments This function reads the format information from a file on disk. The file to inquire about
must be in either BMP, TIFF, or AVI format. Reading parameters from a raw file is not
supported. This function is intended to be called before BiDiskBufRead. This function
will retrieve all the information needed for BiDiskBufRead.

BiDiskParamRead BitFlow SDK

SDK-9-10 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-10-1

BufIn Status Functions

Chapter 10

10.1 Introduction

This set of functions provides the ability to inquire acquisition status and DLL version. The
functions in this section provide the ability to find out if acquisition has been started,
stopped, aborted, paused or if clean up has been called. There is also a function to deter-
mine how many frames have been captured and missed during an acquisition session.

The version checking function checks the version of the BufIn DLL that is on the runtime
machine with the version of the SDK BufIn was built with. The variables BF_SDK_VER-
SION_MAJOR and BF_SDK_VERSION_MINOR are defined in the header files and should
match the values returned from this function at runtime. If there is a miss match, usually
the DLL on the runtime machine is not compatible with the application.

The functions in this section can be used with both sequence and circular functions.

BiControlStatusGet BitFlow SDK

SDK-10-2 BitFlow, Inc. Version G.8

10.2 BiControlStatusGet

Prototype BIRC BiControlStatusGet(Bd Board, PBIBA pBufArray, PBFBOOL Start, PBFBOOL
Stop, PBFBOOL Abort, PBFBOOL Pause, PBFBOOL Cleanup)

Description Outputs the values of the acquisition status flags.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Start

Returns the start status of acquisition. If Start is TRUE, the acquisition of image data to
buffers has started. If Start is FALSE, acquisition of image data has either been
stopped, never started, or aborted.

Stop

Returns the stop status of acquisition. If Stop is TRUE, acquisition of image data to
buffers has been stopped, aborted, or never started. When acquisition is stopped,
the last frame is fully acquired, then acquisition is stopped. If Stop is FALSE, image
data is being acquired.

Abort

Returns the abort status of acquisition. If Abort is TRUE, acquisition of image data to
buffers has been aborted. When acquisition is aborted, acquisition of data is stopped
immediately, not waiting for the last frame to be completely acquired. If Abort is
FALSE, acquisition has not been aborted.

Pause

Returns the pauses status of acquisition. If Pause is TRUE, acquisition of image data to
buffers has been paused. If FALSE, acquisition has not been paused.

Cleanup

Returns the clean up status. If Cleanup is TRUE, BiSeqCleanUp or BiCircCleanUp has
been called. If FALSE, BiSeqCleanUp or BiCircCleanUp has not been called.

Returns

Comments This function returns the acquisition status flags.

BI_OK In all cases.

BufIn Status Functions BiCaptureStatusGet

Version G.8 BitFlow, Inc. SDK-10-3

10.3 BiCaptureStatusGet

Prototype BIRC BiCaptureStatusGet(Bd Board, PBIBA pBufArray, PBFU32 Captured, PBFU32
Missed)

Description Outputs the number of frames that have been captured and missed at the moment
the function is called.

Parameters Board

Handle to board.

pBufArray

A pointer to a structure that holds all acquisition information.

Captured

Returns the number of frames that have been captured.

Missed

Returns the number of frames that have been missed.

Returns

BI_OK In all cases.

BiDVersion BitFlow SDK

SDK-10-4 BitFlow, Inc. Version G.8

10.4 BiDVersion

Prototype BIRC BiDVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)

Description Returns the current version of their corresponding DLL.

Parameters pMajorVersion

When the function returns, it contains the major version number. If the highest order
bit is set, the DLL is a debug version.

pMinorVersion

When the function returns, it contains the minor version number.

Returns

Comments This function returns the version of the BiD DLL. This function can be used to make
sure applications are working with the correct DLLs. The variables BF_SDK_VERSION_
MAJOR and BF_SDK_VERSION_MINOR are always defined in the header files of the
SDK. These variables can be used in an application to determine what version of the
SDK the application was built with. These variables can also be compared to the val-
ues returned from the above functions to maintain version consistency between the
application and the current DLLs.

The highest order bit (bit 31) will be set in the pMajorVersion parameter upon return if
the current DLL is a debug version.

BI_OK In all cases.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-11-1

BufIn Error Functions

Chapter 11

11.1 Introduction

The error function provides a means to view error messages returned from function. The
error message will be displayed in a dialog box. The message will include the function
that failed and a description of the failure.

Note: These functions only work the errors produced by the BufIn functions. There is a
separate set of functions for BF level errors.

Note: There are also special error functions that are for use when performing circular
acquisition. See Section 6.5, Section 6.6, Section 7.3 and Section 7.4.

BiErrorShow BitFlow SDK

SDK-11-2 BitFlow, Inc. Version G.8

11.2 BiErrorShow

Prototype BIRC BiErrorShow(Bd Board, BIRC ErrorNum)

Description Pops up a dialog displaying a text description of the error given by the ErrorNum
parameter.

Parameters Board

Handle to board.

ErrorNum

The error number usually returned by a BI function.

Returns

Comments This function pops up a dialog box displaying the text describing the error passed by
the ErrorNum parameter. This function also displays the name of the function that
failed. This function can optionally be called by an application to visually display error
text. The ErrorNum parameter will usually be the value returned from a function.

BI_OK In all cases.

BufIn Error Functions BiErrorTextGet

Version G.8 BitFlow, Inc. SDK-11-3

11.3 BiErrorTextGet

Prototype BIRC BiErrorTextGet(Bd Board, BIRC ErrorNum, PBFCHAR ErrorText, PBFU32 Error-
TextSize)

Description Returns a text description of the error given by the ErrorNum parameter.

Parameters Board

Handle to board.

ErrorNum

The error number to get the error text for.

ErrorText

A user allocated buffer to hold the returned error text.

ErrorTextSize

The size of the ErrorText buffer the user has allocated in bytes.

Returns

Comments This function returns a text description for the error given by the ErrorNum parame-
ter. To use this function the user must allocate memory to hold the returned error text,
ErrorText. The user passes in the size of the allocated buffer with the ErrorTextSize
parameter. When the function returns, the ErrorTextSize parameter will be overwrit-
ten with the number of bytes written into the ErrorText buffer when the function is
successful. If the buffer is to small to accommodate the error text, the ErrorTextSize
parameter returns the size that the buffer needs to be to hold the complete message.
The function will also copy as much of the error message as possible into the buffer
when the buffer is to small. For any other errors, the ErrorText buffer and ErrorText-
Size remain unchanged.

BI_OK If successful.

BI_ERROR_BUFFER_TOO_
SMALL

The returned error text will not fit into the
user allocated buffer. Allocate more memory
for ErrorText.

BI_ERROR_ERR_NOT_FOUND A ErrorNum was passed into the function
that dose not exist.

BI_ERROR_NULL_TEXT_PTR The pointer to the ErrorText buffer was null.

BiErrorList BitFlow SDK

SDK-11-4 BitFlow, Inc. Version G.8

11.4 BiErrorList

Prototype BIRC BiErrorList()

Description Generates a file that lists all the error numbers and descriptions for the BI API.

Parameters None.

Returns

Comments The function will generate a text file called “BiErrorList.txt” in the current directory. The
text file will contain all the error numbers and descriptions of the errors. This list of
errors can be helpful when debugging.

BI_OK If successful.

A non-zero value. This function will return a non-zero value if it
fails.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-12-1

Camera Interface (Ci) Introduction

Chapter 12

12.1 Overview

The main purpose of the “Ci” function is to provide a board model agnostic interface to
setting up and controlling any BitFlow frame grabber. These function hide the model spe-
cific functionality that is seen in the “R2”, R64” and “Gn2” APIs. The “CI” functions provide
everything needed to set up a board for acquisition and control all of the board’s features.
However, using these function to set the board up to acquire into more than a single host
buffer can be quite complicate at the “Ci” level. We there for recommend that you use the
“Bi” functions for anything beyond setting up a single host buffer. The “Bi” functions pro-
vide all the major board setup and control functionality in a very simple to use interface.

That said “Ci” API still provides some much needed functionality when use a board in a
non-standard way or modifying the boards settings on-the-fly from your application. In
this sense the “Ci” layer occupies the middle of the BitFlow API stack. Chances are you will
need some of these functions, but probably not very many.

For the most part is fine to mix “Bi” and “Ci” functions. However, the “Bi” functions should
be use for opening the board, setting up buffers for acquisition and controlling acquisi-
tion. The “Ci” function can then be used to further customize the board.

Overview BitFlow SDK

SDK-12-2 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-13-1

Ci System Open and Initialization

Chapter 13

13.1 Introduction

The functions described in this chapter are quite simple; the idea is to find the board or
boards that you want to work with, then open and optionally initialize them. When you are
finished, close the system up, thus cleaning up all resources allocated in the open func-
tion.

A normal program would uses these functions, in this order:

CiSysBrdFind(CISYS_TYPE_ANY, 0, &Entry);
CiBrdOpen(Entry, hBoard, BFSysInitialize);
// acquisition and processing
CiBrdClose(hBoard);

If you want to open two boards, the flow would be as follows:

CiSysBrdFind(CISYS_TYPE_ANY,0,&Entry0);// find board 0
CiBrdOpen(Entry0, hBoard0, BFSysInitialize);// open board 0
CiSysBrdFind(CISYS_TYPE_ANY,1,&Entry1);// find board 1
CiBrdOpen(Entry1,hBoard1,BFSysInitialize);// open board 1

// acquisition and processing

CiBrdClose(hBoard0);// close board 0
CiBrdClose(hBoard1);// close board 1

The board find functions are used to make sure that you are opening the correct board in
a multi-board system. If you have only one board, then the call is trivial.

There is currently two board find functions. The first is CiSysBrdFind, which is used to find
boards by board family and board number. The second is CiSysBoardFindSWConnector,
which is used to find a board based on its switch settings and connector number (for
boards with more than one Virtual Frame Grabber).

The handle return by the function CiBrdOpen is used in all subsequent function calls. If
you are using two or more boards, open each board and store each handle in a separate
variable. Whenever you want to talk to board X, pass the handle for board X to the func-
tion.

There is no need to call CiBrdOpen more than once per process per board. Because this
function takes a fair amount of CPU time and allocated resources, we discourage users
from repeatedly calling CiBrdOpen and the CiBrdClose in a loop. We recommend open-
ing the board once, when the application starts, and closing it once when the application
exits. If you are using a program that has multiple threads, open the board once in the first

Introduction BitFlow SDK

SDK-13-2 BitFlow, Inc. Version G.8

main thread and then pass the board handle to every thread that is subsequently cre-
ated. You must call CiBrdClose for every board that is opened with CiBrdOpen. You
should also call CiBrdClose in the same thread the CiBrdOpen was called in.

Ci System Open and Initialization Specifying Camera Configuration Files

Version G.8 BitFlow, Inc. SDK-13-3

13.2 Specifying Camera Configuration Files

A camera configuration file is used to initialize a board to work with a specific camera
in a specific mode. When a board is opened and initialized, a camera configuration
file must be specified. There area a few different methods to specify a camera config-
uration file. For more information on these methods see section 1.3.

CiSysBrdEnum BitFlow SDK

SDK-13-4 BitFlow, Inc. Version G.8

13.3 CiSysBrdEnum

Prototype BFRC CiSysBrdEnum(BFU32 Type, BFU32 Number)

Description This function can be used to find the number of specific boards in a system. This func-
tion is unique to the Ci API.

Parameters Type

Board to select:

CISYS_TYPE_R2 – Find all RoadRunners.
CISYS_TYPE_R64 – Find all R64s.
CISYS_TYPE_GN2 - Find Aons, Axions, Cytons and Claxons.
CISYS_TYPE_ANY – Find all model boards installed.

Number

Pointer to the number of boards found in the system.

Returns

Comments

CI_OK If successful.

CISYS_ERROR_UNKNOWN_TYPE An invalid board handle was passed to the
function.

Ci System Open and Initialization CiSysBrdFind

Version G.8 BitFlow, Inc. SDK-13-5

13.4 CiSysBrdFind

Prototype BFRC CiSysBrdFind(BFU32 Type, BFU32 Number, PCiENTRY pEntry)

Description Finds a the board specified by Type on the PCI bus with a given number.

Parameters Type

The type of board to find:

CISYS_TYPE_R2 – Search for a RoadRunner/R3.
CISYS_TYPE_R64 – Search for a R64/R64e/Karbon/Neon/Alta.
CISYS_TYPE_GN2 - Find Aons, Axions, Cytons and Claxons.
CISYS_TYPE_ANY – Search for a board by number, ignoring the board

type.

Number

The number of the board to find. Boards are numbered sequentially as they are found
when the system boots. A given board will be the same number every time the system
boots, as long as the number of boards remains the same and are in the same PCI
slot.

pEntry

A pointer to an empty CiENTRY structure, used to tell the CiBrdOpen function which
board to open.

Returns

Comments If you have only one board in your system, set Number = 0 and only call this function
once. This function can be used to enumerate all of the boards in a system. It can be
called repeatedly, incrementing Number each time, until the function returns CISYS_
ERROR_NOTFOUND.

There is no standard way to correlate the Number parameter of this function to the
PCI slot number. Every motherboard and BIOS manufacturer has a different scheme.
You can use the system configuration utility, SysReg, to determine the relationship
between slot number and board Number, by setting the board ID switches different
for each board in your system and walking through all the installed boards.

CI_OK The board was successfully found.

CISYS_ERROR_NOTFOUND There is no board with this number.

CISYS_ERROR_UNKNOWN_
TYPE

The board type is unknown.

CISYS_ERROR_SYSTEM Error reading registry.

CiSysBrdFind BitFlow SDK

SDK-13-6 BitFlow, Inc. Version G.8

When using CISYS_TYPE_ANY for Type, the board is found only using the board
number. For instance, if board 0 is an R3, board 1 is a Neon and board 2 is an Axion
and the following function calls are made with the following results:

CiSysBrdFind(CISYS_TYPE_ANY, 0, pEntry); // Returns the R3
CiSysBrdFind(CISYS_TYPE_ANY, 1, pEntry); // Returns the Neon
CiSysBrdFind(CISYS_TYPE_ANY, 2, pEntry); // Returns the Axion

Ci System Open and Initialization CiSysBoardFindSWConnector

Version G.8 BitFlow, Inc. SDK-13-7

13.5 CiSysBoardFindSWConnector

Prototype BFRC CiSysBoardFindSWConnector(BFU32 Type, BFU32 Switch, BFU32 Connector,
PCiENTRY pEntry)

Description Finds a the board/VFG of the given Type with the switch set to Switch and using the
connector number Connector.

Parameters Type

The type of board to find:

CISYS_TYPE_R2 – Search for a RoadRunner/R3.
CISYS_TYPE_R64 – Search for a R64/R64e/Karbon/Neon/Alta.
CISYS_TYPE_GN2 - Find Aons, Axions, Cytons and Claxons.
CISYS_TYPE_ANY – Search for any type of board.

Switch

This is an integer value (usually between 0 and 3 inclusive) that matches the physical
switch setting on the board to be found.

Connector

This is an integer value (usually between 1 and 4 inclusive) that matches the connec-
tor number on the board to be found. This is only useful for boards with more than
one virtual frame grabber and more than one connector. For boards with only one
connector, this should be set to 0.

pEntry

A pointer to an empty CiENTRY structure, used to tell the CiBrdOpen function which
board to open.

Returns

Comments This function is usefull for find a particular board in a multi board system. There are
two types of mult-board systems. You might have one physical board in your system,
but it might have more than one virutal frame grabber on it. For example, the Karbon-
4 looks to software like four frame grabbers. These are usually called virtual frame
grabbers or VFGs. Each VFG on a Karbon 4 has its own connetor. So this function can
be used to find the VFG associated with a particular connector number. For these situ-

CI_OK The board was successfully found.

CISYS_ERROR_NOTFOUND There is no board with this number.

CISYS_ERROR_UNKNOWN_
TYPE

The board type is unknown.

CISYS_ERROR_SYSTEM Error reading registry.

CiSysBoardFindSWConnector BitFlow SDK

SDK-13-8 BitFlow, Inc. Version G.8

ations, set the Connector variable to that of the desire VFG (camera) that you would
like to open. In these cases, you will still need to set the Switch variable so that it
matches that of the board, the default on all boards is 0.

For situations where more than one board is installed, you can set each board’s phsy-
cial switch to a different value. Then call this function and set the Switch parameter to
match that of the board you want to open. In these situations, set the Connector
parameter to 0.

In some situations, for example when two Karbon-4 boards are installed in the same
system, you will have to set both the Connector and the Switch parameter to find the
correct board/VFG to open.

If you only have one, single VFG, board installed in your system, it might be easier to
use CiSysBrdFind function.

Ci System Open and Initialization CiBrdOpen

Version G.8 BitFlow, Inc. SDK-13-9

13.6 CiBrdOpen

Prototype BFRC CiBrdOpen(PCiENTRY pEntry, Bd *pBoard, BFU32 Mode)

Description Opens a board for access. This function must return successfully before any other Bit-
Flow SDK functions are called (with the exception of CiSysBrdFind and CiSysBrdEnum
functions).

Parameters pEntry

A pointer to a filled out CiENTRY structure. This structure describes which board is to
be opened. The structure is filled out by a call to the CiSysBrdFind function.

*pBoard

A pointer to a board handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

BFSysInitialize - initialize the board.
BFSysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
BFSysNoIntThread - do not start interrupt IRP thread.
BFSysNoCameraOpen - do not open any configured cameras.
BFSysNoOpenErrorMess - suppress all dialogs in open function
BFSysNoPoCLChange - This flag forces the system to leave the PoCL sys-

tem as is (does not change its state).
BFSysPoCLUpOnly - This flag will cause the board to power up PoCL if it is

off, but won't turn it off, if it is on.
BFSysPoCLCycle - This flag will cause the board to power down PoCL if it is

on, the power PoCL back up.
BFSysSerialPortOpen - used when opening the serial port, included some

of the above flags
BFSysNoCXPInit - Don't initialize the CXP subsystem
BFSysNoGenTLInit - Don't use GenTL camera control during board initial-

ization.
BFSysNoIOReset - Do not reset I/O outputs before setting them as per con-

figuration file

Returns

CI_OK Function was successful.

CiBrdOpen BitFlow SDK

SDK-13-10 BitFlow, Inc. Version G.8

Comments This function opens the board for all accesses. Call the CiSysBrdFind function to find
the board you wish to open, then call this function to open to board. The board must
be opened before any other functions can be called. When you are finished accessing
the board you must call CiBrdClose, before exiting your process. Failure to call CiBrd-
Close will result in incorrect board open counts used by the driver.

If this function fails, you cannot access the board. Also, you do not need to call CiBrd-
Close.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call CiBrdClose first.

Calling this function with Mode = BFSysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = BFSysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use. If in CiS-
ysExclusive mode, you will not be able to open the board if any other process has
already opened the board, regardless of the mode the other process used to open
the board. Finally, if you do succeed in opening the board in this mode, no other pro-
cesses will be allowed to open the board.

CISYS_ERROR_OPENING Error opening board.

CISYS_ERROR_BAD_
ENTRY

Invalid entry passed to function. Be sure that the
entry returned from CiSysBrdFind is passed this func-
tion.

Ci System Open and Initialization CiBrdOpenCam

Version G.8 BitFlow, Inc. SDK-13-11

13.7 CiBrdOpenCam

Prototype BFRC CiBrdOpen(PCiENTRY pEntry, Bd *pBoard, BFU32 Mode, PBFCHAR Force-
CamFile)

Description Opens a board for access. This function must return successfully before any other Bit-
Flow SDK functions are called (with the exception of CiSysBrdFind and CiSysBrdEnum
functions).

Parameters pEntry

A pointer to a filled out CiENTRY structure. This structure describes which board is to
be opened. The structure is filled out by a call to the CiSysBrdFind function.

*pBoard

A pointer to a board handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

BFSysInitialize - initialize the board.
BFSysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
BFSysNoIntThread - do not start interrupt IRP thread.
BFSysNoCameraOpen - do not open any configured cameras.
BFSysNoAlreadyOpenMess – suppress board already open message.
BFSysNoPoCLChange - This flag forces the system to leave the PoCL sys-

tem as is (don't change its state).
BFSysPoCLUpOnly - This flag will power up PoCL if it is off, but won't turn it

off, if it is on.
BFSysSerialPortOpen - used when opening the serial port, included some

of the above flags
BFSysNoCXPInit - Don't initialize the CXP subsystem
BFSysNoGenTLInit - Don't use GenTL camera control during board initial-

ization.
BFSysNoIOReset - Do not reset I/O outputs before setting them as per con-

figuration file

CiBrdOpenCam BitFlow SDK

SDK-13-12 BitFlow, Inc. Version G.8

ForceCamFile

The camera file to open. The camera file should include the name and the file exten-
sion. If only the file name and extension are given, the camera configuration path is
searched for the camera file. (The camera configuration path by default is the Config
folder under the SDK root.) If the full path is given, the camera file will try and be
opened from that location.

Note: For Gen2 boards, The format needs to be "mode@camfile.ext", where “mode” is
one of the modes from the BFML file. If just "camfile.ext" is used, mode="default" will
be opened.

Returns

Comments This function opens the board for all accesses. Call the CiSysBrdFind function to find
the board you wish to open, then call this function to open to board. The board must
be opened before any other functions can be called. When you are finished accessing
the board you must call CiBrdClose, before exiting your process. Failure to call CiBrd-
Close will result in incorrect board open counts used by the driver.

If this function fails, you cannot access the board. Also, you do not need to call CiBrd-
Close.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call CiBrdClose first.

Calling this function with Mode = BFSysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = BFSysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use. If in CiS-
ysExclusive mode, you will not be able to open the board if any other process has
already opened the board, regardless of the mode the other process used to open
the board. Finally, if you do succeed in opening the board in this mode, no other pro-
cesses will be allowed to open the board.

CI_OK Function was successful.

CISYS_ERROR_OPENING Error opening board.

CISYS_ERROR_BAD_
ENTRY

Invalid entry passed to function. Be sure that the
entry returned from CiSysBrdFind is passed this func-
tion.

Ci System Open and Initialization CiBrdCamSel

Version G.8 BitFlow, Inc. SDK-13-13

13.8 CiBrdCamSel

Prototype BFRC CiBrdCamSel(Bd Board, BFU32 CamIndex, BFU32 Mode)

Description Sets a board’s current camera to the camera with the given index. Depending on the
mode, the board can also be initialized for this camera.

Parameters Board

Handle to board.

CamIndex

Index of camera to become current. Index is set in SysReg.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but do not modify the board.
CiSysConfigure - initialize the board for this camera.

Returns

Comments Each board has associated with it a list of configured cameras (set in the SysReg appli-
cation) and a current camera. By default, the current camera is the first camera in the
list of configured cameras. The current camera is important because it dictates the
parameters used for acquisition. There must be a current camera set in order to use
the acquisition functions. This function allows you to pick one of the configured cam-
eras to be the current camera.

If Mode = CiSysConfigure, the board will be initialized for the given camera.

This function is useful for switching on-the-fly between multiple preconfigured cam-
era types.

CI_OK Function was successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R2_INCOMP RoadRunner camera file is incompatible with this
board, or camera file is incompatible with this ver-
sion of the SDK.

R2_BAD_CNFG An error occurred initializing the RoadRunner for
this camera file.

BF_BAD_CAM_INDEX An invalid CamIndex was passed to the function.

CiBrdCamSetCur BitFlow SDK

SDK-13-14 BitFlow, Inc. Version G.8

13.9 CiBrdCamSetCur

Prototype BFRC CiBrdCamSetCur(Bd Board, PRVCAM pCam, BFU32 Mode)

Description Sets the current camera to the camera object pCam that is not necessarily one of the
preconfigured cameras. The board can be optionally initialized to the camera.

Parameters Board

Handle to board.

pCam

A camera object. If pCam = NULL, the function will set the current camera to the
default camera as configured in SysReg.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but does not modify the board.
CiSysConfigure - initialize the board for this camera.

Returns

Comments This function sets the current camera to a camera object that is not one of the cameras
already configured for the board (via SysReg). The camera must already be opened
successfully (see CiCamOpen).

This function allows you to handle your own camera management. You can select,
open, configure and close cameras to suit your applications needs independently of
the SDK’s camera management.

If Mode = CiSysConfigure, the board will be initialized for the given camera.

You must reset the current camera to another camera before you close your manually
managed camera files. This simplest way to do this is call this function if the parameter
pCam set to NULL.

CI_OK Function was successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R2_INCOMP RoadRunner camera file is incompatible with this
board, or camera file is incompatible with this
version of the SDK.

R2_BAD_CNFG An error occurred initializing the RoadRunner for
this camera file.

Ci System Open and Initialization CiBrdInquire

Version G.8 BitFlow, Inc. SDK-13-15

13.10 CiBrdInquire

Prototype BFRC CiBrdInquire(Bd Board, BFU32 Member, PBFU32 pVal)

Description Returns parameters about the current board.

Parameters Board

Handle to board.

Member

Parameter to inquire about:

CiBrdInqModel - returns the board model. The parameter pVal will point to one of:

BFBrdValModel11 - Model RUN-PCI-11-xx
BFBrdValModel12- Model RUN-PCI-12-xx
BFBrdValModel13 - Model R3-PCI-CL-13-xx
BFBrdValModel14 - Model RUN-PCI-14-xx
BFBrdValModel23 - Model R3-PCI-CL-23-xx
BFBrdValModel24 - Model RUN-PCI-24-xx or R3-PCI-DIF
BFBrdValModel44 - Model RUN-PCI-44-xx
BFBrdValModel010 - Model RAV-PCI-010-xxx
BFBrdValModel110 - Model RAV-PCI-110-xxx
BFBrdValModel220 - Model RAV-PCI-220-xxx
BFBrdValModel440 - Model RAV-PCI-440-xxx
BFBrdValModelR64Cl - Model R64-PCI-CL-xx.
BFBrdValModelR64Dif - Model R64-PCI-DIF-xx.
BFBrdInqIDReg - returns the settings of the small switch on the top of the

board.
BFBrdValUnkown - Model number is not known (this is a valid return, all of

the possible models may be known at the time of the software
release).

CiCamXXXX - inquiry parameter is sent the function CiCamInquire using
the current camera configuration. See the function CiCamInquire for
parameters. The result pVal is pass back through this function unmodi-
fied.

CiBrdInqModel - returns the board model. The parameter pVal will point to one of:

BFBrdValSpeed40MHz
BFBrdValSpeedNormal

CiBrdInqLUT - the type of LUT mounted on this board. The parameter pVal will be
one of:

BFBrdValLUTNone
BFBrdValLUT16
BFBrdValLUT8And12

CiBrdInquire BitFlow SDK

SDK-13-16 BitFlow, Inc. Version G.8

CiBrdInqScanType – returns board scan type. The parameter pVal will point to one of
the following:

BFBrdValStandard – board will only work with standard scan cameras.
BFBrdValVariable – board will work with variable scan cameras and stan-

dard scan cameras.

CiBrdInqColorDecoder – indicates if board has NTSC/PAL decoder.The parameter
pVal will point to one of the following:

BFBrdValDecoderMounted – color decoder mounted.
BFBrdValNoDecoder – no color decoder mounted.

CiBrdInqAnalogType – returns type of analog video input board is setup for.The
parameter pVal will point to one of:

BFBrdValDifferential – board has differential video input.
BFBrdValSingle – board has single ended video input.
BFBrdInqNumCams – returns the number of cameras the board is config-

ured for.

pVal

Pointer returned containing the requested value.

Returns

Comments This function is used to inquire of the system characteristics of the board. This function
can also be called with CiCamInquire Members, which are then passed to that func-
tion using the board’s current camera.

CI_OK Function was successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R2_BAD_INQ_PARAM The Member parameter is unknown.

RV_BAD_INQ_PARAM The Member parameter is unknown.

Ci System Open and Initialization CiBrdClose

Version G.8 BitFlow, Inc. SDK-13-17

13.11 CiBrdClose

Prototype BFRC CiBrdClose(Bd Board)

Description Closes the board and frees all associated resources.

Parameters Board

Handle to board.

Returns

Comments This function closes the board and releases associated resources. This function must
be called whenever a process exits regardless of the reason the process is exiting. The
only time that this function does not have to be called is if CiSysBrdOpen fails. This
function decrements the internal counters that are used to keep track of the number
of processes that have opened the board.

CI_OK In all cases.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CiBrdAqTimeoutSet BitFlow SDK

SDK-13-18 BitFlow, Inc. Version G.8

13.12 CiBrdAqTimeoutSet

Prototype BFRC CiBrdAqTimeoutSet(Bd Board, BFU32 Timeout)

Description Sets the timeout value for this board's current camera.

Parameters Board

Board to select the camera for.

Timeout

New value for timeout, in milliseconds. Set this value to the define INFINITE or 0xffffffff
to have the functions never timeout.

Returns

Comments This function sets the timeout value for this board's current camera. By default, this
value is set from the camera configuration file.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Non-zero On error.

Ci System Open and Initialization CiBrdCamGetCur

Version G.8 BitFlow, Inc. SDK-13-19

13.13 CiBrdCamGetCur

Prototype BFRC CiBrdCamGetCur(Bd Board, PBFCNF *pCam)

Description Gets the current acquire signal to a signal record provided by the caller.

Parameters Board

Board to select.

*pCam

Pointer to caller’s signal record.

Returns

Comments This function gets the current acquire signal to a signal record provided by the caller.
For more information about signals, refer to the Signal Functions section.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CiBrdType BitFlow SDK

SDK-13-20 BitFlow, Inc. Version G.8

13.14 CiBrdType

Prototype BFRC CiBrdType (Bd Board)

Description Returns the type of board.

Parameters Board

Board to select.

Returns

Comments Use this function to determine what board is being used.

CISYS_TYPE_R2 If the board is a RoadRunner or RoadRunnerCL.

CISYS_TYPE_R64 If the board is a R64.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion. The board is not recognized.

Ci System Open and Initialization CiBrdAqSigSetCur

Version G.8 BitFlow, Inc. SDK-13-21

13.15 CiBrdAqSigSetCur

Prototype BFRC CiBrdAqSigSetCur (Bd Board, PBFVOID pAqSig, BFU32 AqEngine)

Description Sets the current acquire signal to a signal record provided by the caller.

Parameters Board

Board to select.

pAqSig

Pointer to caller’s signal record.

AqEngine

AqEngJ – Acquisition engine J.
AqEngK – Acquisition engine K.

Returns

Comments This function sets the current acquire signal to a signal record provided by the caller.
For more information about signals, refer to the Signal Functions section.

The AqEngine parameter only used by the Raven. AqEngine is used by the Raven to
chose between the two DMA engines on the board, engine J and engine K.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion. The board is not recognized.

CiBrdAqSigGetCur BitFlow SDK

SDK-13-22 BitFlow, Inc. Version G.8

13.16 CiBrdAqSigGetCur

Prototype BFRC CiBrdAqSigGetCur (Bd Board, PBFVOID pAqSig, BFU32 AqEngine)

Description Gets the current acquire signal.

Parameters Board

Board to select.

pAqSig

Pointer to storage for acquire signal.

AqEngine

AqEngJ – Acquisition engine J.
AqEngK – Acquisition engine K.

Returns

Comments This function gets the current acquire signal. See the section on signal to understand
what a signal is.

The AqEngine parameter only used by the Raven. AqEngine is used by the Raven to
chose between the two DMA engines on the board, engine J and engine K.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion. The board is not recognized.

Ci System Open and Initialization CiBrdCamGetFileName

Version G.8 BitFlow, Inc. SDK-13-23

13.17 CiBrdCamGetFileName

Prototype BFRC CiBrdCamGetFileName (Bd Board, BFU32 Num, PBFCHAR CamName,
BFSIZET CamNameStLen)

Description Gets the file name of the attached camera(s).

Parameters Board

Board to select.

Num

Camera number to get the name of.

CamName

Contains the file name of the camera configuration.

CamNameStLen

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter CamName.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. These configurations are attached to the board in SysReg. The Num parame-
ter corresponds to the number configuration in the list of attached cameras in SysReg.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion. The board is not recognized.

CiBrdCamGetFileNameWithPath BitFlow SDK

SDK-13-24 BitFlow, Inc. Version G.8

13.18 CiBrdCamGetFileNameWithPath

Prototype BFRC CiBrdCamGetFileName (Bd Board, BFU32 Num, PBFCHAR CamNameWith-
Path, BFSIZET CamNameWithPathStLen)

Description Gets the file name (including full path) of the attached camera(s).

Parameters Board

Board to select.

Num

Camera number to get the name of.

CamNameWithPath

Contains the file name (including full path) of the camera configuration.

CamNamWithPateStLen

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter CamNameWithPath.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. The returned string includes the full path of the file. These configurations are
attached to the board in SysReg. The Num parameter corresponds to the number
configuration in the list of attached cameras in SysReg.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion. The board is not recognized.

Ci System Open and Initialization CiBrdCamGetMMM

Version G.8 BitFlow, Inc. SDK-13-25

13.19 CiBrdCamGetMMM

Prototype BFRC CiBrdCamGetMMM(Bd Board, PBFCHAR Make, BFU32 MakeStrSize, PBF-
CHAR Model, BFU32 ModelStrSize, PBFCHAR Mode, BFU32 ModeStrSize)

Description Returns the make, model and mode of the current camera configuration.

Parameters Board

Board to select.

Make

Returns the make string from the camera configuration file.

MakeStrSize

This size of the string pointed to by the Make parameter.

Model

Returns the model string from the camera configuration file.

ModelStrSize

This size of the string pointed to by the Model parameter.

Mode

Returns the mode string from the camera configuration file.

ModeStrSize

This size of the string pointed to by the Mode parameter.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. The returned string includes the full path of the file. These configurations are
attached to the board in SysReg. The Num parameter corresponds to the number
configuration in the list of attached cameras in SysReg.

CI_OK If successful.

R64_BAD_CNF_FILE The current camera configuration file is invalid.

R2_BAD_CNF_FILE The current camera configuration file is invalid.

GN2_BAD_CNF_FILE The current camera configuration file is invalid.

CiMMMIterate BitFlow SDK

SDK-13-26 BitFlow, Inc. Version G.8

13.20 CiMMMIterate

Prototype BFRC CiMMMIterate(BFU32 Index, PBFCHAR Make, BFU32 MakeStrSize, PBFCHAR
Model, BFU32 ModelStrSize, PBFCHAR Mode, BFU32 ModeStrSize, PBFBOOL
pCLModel)

Description Iterates through all the configured boards in the system, returns the make, model and
mode of the current camera configuration for each board.

Parameters Index

Board index to select.

Make

Returns the make string from the camera configuration file.

MakeStrSize

This size of the string pointed to by the Make parameter.

Model

Returns the model string from the camera configuration file.

ModelStrSize

This size of the string pointed to by the Model parameter.

Mode

Returns the mode string from the camera configuration file.

ModeStrSize

This size of the string pointed to by the Mode parameter.

pCLModel

This parameter is set to TRUE if the board at the given index is a Camera Link board.

Returns

Comments This function can be used to iterate through all the boards in a system and return each
board’s configuration’s make, model and mode.

CI_OK If successful.

CI_BAD_INDEX There is no board with the index

CI_BAD_CONFIG Error opening the board number Index

Ci System Open and Initialization CiMMMIterate

Version G.8 BitFlow, Inc. SDK-13-27

This function can be called in a loop, incrementing Index each time, in order to get
the information on each board. Continue iterating until the function returns CI_BAD_
INDEX.

CiMMMIterate BitFlow SDK

SDK-13-28 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-14-1

Ci Camera Configuration

Chapter 14

14.1 Introduction

One of the most powerful features of BitFlow’s interface boards, is the ability for the board
to interface to an almost infinite variety of cameras. The knowledge behind these inter-
faces is stored in the camera configuration files.

The normal way a BitFlow application works is that the board is initialized to interface to
the camera currently attached to the board. The currently attached camera is selected in
the SysReg utility program. Normally an application is written so that it will work with
whatever camera is attached. The board is initialized for the currently attached camera
when CiBrdOpen is called. If an application is written this way there is no need to call any
of the functions in this chapter. However, some users may want to manage what cameras
are attached and how the user switches between them using their own software. For this
reason, these camera configuration functions are provided.

The normal flow for an application that wants to manage its own camera files is as follows:

CiBrdOpen
CiCamOpen
CiBrCamSetCur
// processing and acquisition
CiCamClose
CiBrdClose

If using more than one camera:

CiBrdOpen
CiCamOpen // open camera 0
CiCamOpen // open camera 1
CiBrdCamSetCur // configure for camera 0

// processing and acquisition
CiBrdCamSetCur // configure for camera 1

// processing and acquisition
CiCamClose // close camera 0
CiCamClose // close camera 1
CiBrdClose

CiCamOpen BitFlow SDK

SDK-14-2 BitFlow, Inc. Version G.8

14.2 CiCamOpen

Prototype BFRC CiCamOpen(Bd Board, PCHAR CamName, PBFCNF *pCam)

Description Allocates a camera configuration object, opens a camera configuration file, and loads
the file into the object.

Parameters Board

Handle to board.

CamName

The name of the camera file to open. Do not include the path. The camera file must
be in the configuration directory (see the SysReg application). For example:
“GenRS170-PLL.rvc”.

*pCam

A pointer to a camera object. The memory to hold the object is allocated in this func-
tion.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R64_NO_CNFDIR_REG_KEY The configuration directory entry is missing in the
register (run SysReg).

R64_BAD_PATH Error building the path to the camera file.

R64_BAD_STRUCT Error calculating the size of the camera structure.

R64_BAD_ALLOC Cannot allocate memory to perform open.

R64_BAD_CNF_FILE Error opening or reading configuration file.

R64_BAD_HEADER Error in configuration file header. This could
include an error in one or more of the following
items: signature (RoadRunner configuration),
endian test (endian model is unknown), revision
(camera revision is incompatible), size (size of file
is not the same as written) and CRC (byte error in
file).

R64_BAD_BINR Error reading configuration item from file.

R64_BAD_CNFA Error inserting configuration item into camera
object.

ERRV_BAD_CNF_FILE Error opening or reading configuration file.

Ci Camera Configuration CiCamOpen

Version G.8 BitFlow, Inc. SDK-14-3

Comments This function allocates memory to hold a camera configuration object, locates the
given camera configuration file in the configuration directory, checks the file for
errors, then loads the camera configuration parameters into the camera object. The
camera object is used to tell the system how to set up the board to acquire from a par-
ticular camera. Use the program CamVert to edit camera configuration files.

The resulting camera object can be passed to other functions such as CiBrdCamSet-
Cur.

The resources allocated by the function must be freed by calling CiCamClose.

CiCamInquire BitFlow SDK

SDK-14-4 BitFlow, Inc. Version G.8

14.3 CiCamInquire

Prototype BFRC CiCamInquire(Bd Board, PBFCNF pCam, BFU32 Member, PBFU32 pVal)

Description Returns information about the given camera.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Member

Characteristic to find the value of. The member must be one of:

CiCamInqXSize - width of image in pixels.
CiCamInqYSize0 - Camera 0 height of image in lines.
CiCamInqYSize1 - Camera 1 height of image in lines.
CiCamInqYSize2 - Camera 2 height of image in lines.
CiCamInqYSize3 - Camera 3 height of image in lines.
CiCamInqFormat - image format.
CiCamInqPixBitDepth - depth of pixel in bits, as acquired to host.
CiCamInqBytesPerPix - depth of pixel in bytes, as acquired to host.
CiCamInqFrameSize0 - camera 0 total size of image in bytes, as acquired

to host.
CiCamInqFrameSize1 - camera 1 total size of image in bytes, as acquired

to host.
CiCamInqFrameSize2 - camera 2 total size of image in bytes, as acquired

to host.
CiCamInqFrameSize3 - camera 3 total size of image in bytes, as acquired

to host.
CiCamInqFrameWidth - width of image in bytes, as acquired to host.
CiCamInqAqTimeout - number of milliseconds to wait before acquisition

command times out.
CiCamInqBytesPerPixDisplay - depth of pixel in bytes, as acquired to dis-

play.
CiCamInqPixBitDepthDisplay - depth of pixel in bits, as acquired to dis-

play.
CiCamInqBitsPerSequence - depth of multi-channel pixel in bits, as

acquired to host.
CiCamInqBitsPerSequenceDisplay - depth of multi-channel pixel in bits, as

acquired to display.
CiCamInqDisplayFrameSize0 - total size of image in bytes, as acquired to

display.
CiCamInqDisplayFrameWidth - width of image in bytes, as acquired to dis-

play.
CiCamInqCamType - camera type.

Ci Camera Configuration CiCamInquire

Version G.8 BitFlow, Inc. SDK-14-5

CiCamInqControlType - type of camera control accessible through API.

pVal

Pointer to value of the characteristic.

Returns

Comments This function is used to inquire about characteristics of a camera. For 8-bit cameras,
the parameter CiCamInqHostFrameSize is equal to CiCamInqDisplayFrameSize. The
parameter only differs for pixel depths greater than eight.

Table 14-1 Shows the Ci parameters and equivalent for the RoadRunner parameters.
If there is no equivalent parameter, an unknown parameter error will be returned.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_

PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R64_BAD_INQ_PARAM Unknown Member parameter.

RV_BAD_INQ_PARAM Unknown Member parameter.

Non-zero On error.

Table 14-1 Correlation of Ci Parameters to RoadRunner Parameters

Ci Parameter RoadRunner Parameter

CiCamInqXSize R2CamInqXSize

CiCamInqYSize0 R2CamInqYSize

CiCamInqYSize1 Error

CiCamInqYSize2 Error

CiCamInqYSize3 Error

CiCamInqFormat R2CamInqFormat

CiCamInqPixBitDepth R2CamInqPixBitDepth

CiCamInqBytesPerPix R2CamInqBytesPerPix

CiCamInqFrameSize0 R2CamInqHostFrameSize

CiCamInqFrameSize1 Error

CiCamInqFrameSize2 Error

CiCamInqFrameSize3 Error

CiCamInquire BitFlow SDK

SDK-14-6 BitFlow, Inc. Version G.8

CiCamInqFrameWidth R2CamInqHostFrameWidth

CiCamInqAqTimeout R2CamInqAqTimeout

CiCamInqBytesPerPixDisplay R2CamInqBytesPerPixDisplay

CiCamInqPixBitDepthDisplay R2CamInqPixBitDepthDisplay

CiCamInqBitsPerSequence R2CamInqBitsPerSequence

CiCamInqBitsPerSequenceDis-
play

R2CamInqBitsPerSequenceDisplay

CiCamInqDisplayFrameSize0 R2CamInqDisplayFrameSize0

CiCamInqDisplayFrameWidth R2CamInqDisplayFrameWidth

CiCamInqCamType R2CamInqCamType

CiCamInqControlType R2CamInqControlType

Table 14-1 Correlation of Ci Parameters to RoadRunner Parameters

Ci Camera Configuration CiCamClose

Version G.8 BitFlow, Inc. SDK-14-7

14.4 CiCamClose

Prototype BFRC CiCamClose(Bd Board, PBFCNF pCam)

Description Frees resources used by a camera object.

Parameters Board

Handle to board.

pCam

Camera object.

Returns

Comments This function frees all resources used by a camera object.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_

PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

CiCamAqTimeoutSet BitFlow SDK

SDK-14-8 BitFlow, Inc. Version G.8

14.5 CiCamAqTimeoutSet

Prototype BFRC CiCamAqTimeoutSet(Bd Board, PBFCNF pCam, BFU32 Timeout)

Description Sets the acquisition timeout variable in the given camera configuration.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Timeout

New value for timeout, in milliseconds.

Returns

Comments This functions sets the timeout value for the configuration. The timeout value is how
long the system will wait for an acquisition command to complete before returning an
error.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Non-zero On error.

Ci Camera Configuration CiCamModeSet

Version G.8 BitFlow, Inc. SDK-14-9

14.6 CiCamModeSet

Prototype BFRC CiCamModeSet(Bd Board, PBFCNF pCam, PBFCHAR ModeName)

Description Sets the board and the camera in the given mode. Only works for models that support
multi-mode camera configuration files.

Parameters Board

Handle to board.

pCam

Pointer to the current camera configuration.

ModeName

Mode to set the board and camera to.

Returns

Comments This functions sets both the board and the camera into the given mode. This function
only works on models that support multi-mode camera configuration files. Multi-
mode camera files can program both the frame grabber’s settings (e.g. I/O, ROI, Tim-
ing Sequencer, etc) and registers as well as programming the camera’s registers (for
cameras that support standard register access.

If the mode ModeName does not exist, no action is taken and the function will still
return BF_OK.

The mode should not be changed when the board is set up for acquisition. The mode
should only be change when acquisition has been cleaned up (or not yet set up).

For a complete list of features that can be changed by changing modes, see the doc-
umentation for the camera configuration files.

CI_OK If successful.

GN2_BAD_CNF_FILE The camera configuration is invalid

CiCamModeGet BitFlow SDK

SDK-14-10 BitFlow, Inc. Version G.8

14.7 CiCamModeGet

Prototype BFRC CiCamModeSet(Bd Board, PBFCHAR ModeName, BFSIZET ModeNameSize)

Description Gets the name of the current mode. Only works for models that support multi-mode
camera configuration files.

Parameters Board

Handle to board.

ModeName

String that will contain the name of the current mode.

ModeNameSize

Size of the buffer pointed to by ModeName.

Returns

Comments This functions returns the name (as a string) of the current mode the board and cam-
era are configured for. This function only works for models that support mulit-mode
camera configurations.

The current mode can be set via SysReg or by calling CiCamModeSet

CI_OK In all cases

Ci Camera Configuration CiCamModesEnum

Version G.8 BitFlow, Inc. SDK-14-11

14.8 CiCamModesEnum

Prototype BFRC CiCamModesEnum(Bd Board, PBFCNF pCam, BFU32 Index, PBFCHAR Mode-
Name, BFU32 ModeNameSize, PBFCHAR ModeComment, BFU32 ModeCommen-
tSize)

Description Enumerates all of the modes supported by the current camera configuration file. Only
works for models that support multi-mode camera configuration files.

Parameters Board

Handle to board.

pCam

Pointer to the current camera configuration.

Index

The index used to retrieve the mode information.

ModeName

String that will contain the name of the mode for the given index. If there is no mode
corresponding to the given Index, the string is returned empty, ModeName[0] = 0.

ModeNameSize

Size of the buffer pointed to by ModeName.

ModeComment

String that will contain the mode comment for the given index.

ModeCommentSize

Size of the buffer pointed to by ModeComment.

Returns

Comments This function is used to enumerate all of the modes in the current camera configura-
tion. The function only works for multi-mode camera configurations. This function can
be used, for example, to provide a list of modes that the user can choose.

CI_OK In all cases

GN2_BAD_CND_FILE The camera configuration file is invalid

CiCamModesEnum BitFlow SDK

SDK-14-12 BitFlow, Inc. Version G.8

To enumerate all of the modes, call this function in a loop and increment Index each
time the function is called. Each time the function returns a new ModeName and
ModeComment will be returned. Once all of the modes have been enumerate, the
parameter ModeName will be return such that ModeName[0] = 0.

Once a choice has been made, through, for example, a user dialog, the chosen
ModeName can the be passed to CiCamModeSet in order to set both the frame
grabber and the camera in the chosen mode.

Ci Camera Configuration CiCamUpdateParams

Version G.8 BitFlow, Inc. SDK-14-13

14.9 CiCamUpdateParams

Prototype BFRC CiCamUpdateParams(Bd Board)

Description Update the drivers internal version of the connected CoaXPress camera’s ROI param-
eters.

Parameters Board

Handle to board.

pCam

Camera object.

Returns

Comments This function is used to get the current camera's acquisition parameters. Currently this
only works on CXP camera that are CXP revision 1.1 or later. The update takes place
internally. The caller should then use CiBrdInquire() to get the new values. Note this
auto configure functionality only works for parameter in the BFML file whose values
are set to "Default".

Note: This this function only works on Gen 2 boards.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CiCamUpdateParams BitFlow SDK

SDK-14-14 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-15-1

Ci Signal Functions

Chapter 15

15.1 Introduction

The purpose of the Signal Functions is to make hardware interrupts available to user-level
applications in a simple and efficient manner. In fact, under Windows, there is no way for a
user-level application to get direct notification of a hardware interrupt. Only kernel-level
drivers can contain interrupt service routines (ISR). Most customers do not want to deal
with the complications of writing ISRs anyway, so BitFlow has come up with the signaling
system.

Basically, a signal is a wrapper around a Windows semaphore object. The signal has a
state and a queue. Every time an interrupt occurs, the signal’s state changes. The nice
thing about signals is that you can wait for their state to change, without using any CPU
cycles. This is what makes them so efficient. This means that you can have one thread pro-
cessing images while another is waiting for the next image to be completely DMAed. The
thread that is waiting for the signal consumes very little CPU time, thus making most of
the CPU available for processing.

Start by creating a signal with the CiSignalCreate. There are a number of different inter-
rupts that the signal can wait for, and it is in this function that you specify the one you
want. Once the signal is created, your application waits for the interrupt with either the
CiSignalWait or the CiSignalWaitNext function. The difference being that the CiSignalWait
function uses a signals queue. If an interrupt has occurred before this function is called,
then this function will return immediately. It will continue to return immediately until there
are no more interrupts in the queue. The CiSignalWaitNext function always waits for the
next interrupt after being called, regardless of how many have occurred since it was last
called.

Signals can be used in a single threaded application, but whenever one of the wait func-
tions is called, execution will be blocked until the interrupt occurs. Because this situation
can potentially hang a process, a time-out parameter is provided for all of the wait func-
tions. If you need an application to process data while waiting on an image to be cap-
tured, create a separate thread to call the wait function. Meanwhile, another thread can
be processing with most of the CPUs cycles. A thread waiting on a signal can be cancelled
with the function CiThreadCancel. This causes the waiting thread to return from the wait
function with an error code indicating that it has been cancelled.

The following is an example of how these functions can be called:

Int ImageIn = 0
main ()
{
 CiBrdOpen// open board
 CiSignalCreate// create the signal for EOF
 CreateThread(EOFThread)// create a thread
 while (KeepProcessing)// main processing loop

Introduction BitFlow SDK

SDK-15-2 BitFlow, Inc. Version G.8

 {
// here we loop until we have an image
while (ImageIn !=1)
{

// secondary processing
}

// now we have an image so process it

ImageIn = 0 // reset variable

// primary image processing
}
// Clean up
CiSignalCancel // cancel signal kill thread
CiSignalFree // free signal resources
CiBrdClose // close board

}

// thread to watch for end of frame
EOFThread()
{

loop
{

rv = CiSignalWait // wait for signal
if(rv == CANCELED) // was is cancel?

exit loop // yes, kill this thread else
else

ImageIn = 1 // no, set new image flag
}

}

Ci Signal Functions CiSignalCreate

Version G.8 BitFlow, Inc. SDK-15-3

15.2 CiSignalCreate

Prototype BFRC CiSignalCreate(Bd Board, BFU32 Type, PCiSIGNAL pSignal)

Description Creates a signal that will allow user level thread to be notified of hardware interrupts.

Parameters Board

Handle to board.

Type

Type of interrupt signal to create. See Table 15-1 below a complete list options for this
parameter.

pSignal

Pointer to CiSIGNAL structure.

Returns

Comments This function creates a signal object that is used to receive interrupt notifications from
the board. The CiSignalWaitXXXX function takes a signal as a parameter. These func-
tions efficiently wait for an interrupt of the given type to occur. The best way to use a
signal is to create a separate thread that calls one of the CiSignalWaitXXXX functions.
This thread will consume minimal CPU cycles until the interrupt occurs. When the
interrupt occurs, the signal is notified and the CiSignalWaitXXXX functions will return.
The thread can then take appropriate action, calling whatever functions are necessary
and/or send messages to the main application thread.

This signaling system is the only way to handle board interrupts at the user applica-
tion level.

More than one signal can be created for the same interrupt on the same board. Also,
more than one process and/or thread can wait for the same interrupt. When the inter-
rupt occurs, all of the signals will be notified in the order they were created. The signal
created by this function receives interrupt notification only from the board passed to
this function in the Board parameter.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

BF_BAD_ARGS Unknown interrupt type.

BF_BAD_ALLOC Could not allocate memory for signal.

BF_BAD_SEMAPHORE Could not get semaphore object from operating
system.

CiSignalCreate BitFlow SDK

SDK-15-4 BitFlow, Inc. Version G.8

The most frequently used signal is Type = CiIntTypeEOD. The CiAqSetup function
automatically sets the interrupt bit in the last quad in the QTab of the current image.
This signal will be notified when the last pixel of the image has been DMAed into
memory, and the current acquisition is done in the case of a snap or freeze. The net
result is the application will receive this interrupt at the end of every frame.

The signal created by this function must be cleaned up by calling CiSignalFree.

Note: The signal Type=CiIntTypeEOD was refered to in previous releases as
CiIntTypeQuadDone.

Note:

Interrupts Table 15-1 shows all of the options for the parameter Type. Not all interrupt types are
available for all models.

Note: In the table below, all signal types start with “BF”, some of these types have an
equivalent “Ci” type, this is shown in Table 15-2.

Note: Interrupt Types marked with an * are not used by any current boards supported
by the current SDK, however, they are still valid for code that might be built with older
SDK versions.

Table 15-1 Interrupt Types

Type R2/R3 Karbon,
Neon, Alta

Aon, Cyton Axion

BFIntTypeHW X X

BFIntTypeFIFO X X

BFIntTypeDMADone X

BFIntTypeEOD X X X X

BFIntTypeCTab X X

BFIntTypeCCUJ *

BFIntTypeCCUK *

BFIntTypeDMAOnly X

BFIntTypeEOFDMAJ *

BFIntTypeEOFDMAK *

BFIntTypeTrig X X X X

BFIntTypeSerial X X X

BFIntTypeQL *

BFIntTypeEOF X X

BFIntTypeCXP X

BFIntTypeEncB X X

Ci Signal Functions CiSignalCreate

Version G.8 BitFlow, Inc. SDK-15-5

BFIntTypeEncA X X

BFIntTypeBMError X X

BFIntTypeAELossOfSync X X

BFIntTypePCIEPkt-
Dropped

X X

BFIntTypeYAq X X

BFIntTypeZAq X X

BFIntTypeVStart X X

BFIntTypeYStart X X

BFIntTypeZStart X X

BF0UnderCurrent X

BF0OverCurrent X

BF0TrigAckRcvd X

BF0GpioAckRcvd X

BF0CtlAckRcvd X

BF0GpioRcvd X

BF0TrigRcvd X

BF0CtlRspFifoOvf X

BF0CtlReqFifoOvf X

BF0GpioNomatch X

BF0TrigNomatch X

BF0IoackUnknownType X

BF0IoackNomatch X

BF0IoackUnexpectedInt X

BF0IoackNomatch2 X

BF0StrmPktDrop X

BF0StrmNotEnoughDat X

BF0StrmTooMuchDat X

BF0StrmBadCrc X

BF0StrmOverflow X

Table 15-1 Interrupt Types

Type R2/R3 Karbon,
Neon, Alta

Aon, Cyton Axion

CiSignalCreate BitFlow SDK

SDK-15-6 BitFlow, Inc. Version G.8

BF0StrmCorner X

BF0SerdesLostAlign X

BF1UnderCurrent X

BF1OverCurrent X

BF1TrigAckRcvd X

BF1GpioAckRcvd X

BF1CtlAckRcvd X

BF1GpioRcvd X

BF1TrigRcvd X

BF1CtlRspFifoOvf X

BF1CtlReqFifoOvf X

BF1GpioNomatch X

BF1TrigNomatch X

BF1IoackUnknownType X

BF1IoackNomatch X

BF1IoackUnexpectedInt X

BF1IoackNomatch2 X

BF1StrmPktDrop X

BF1StrmNotEnoughDat X

BF1StrmTooMuchDat X

BF1StrmBadCrc X

BF1StrmOverflow X

BF1StrmCorner X

BF1SerdesLostAlign X

BF2UnderCurrent X

BF2OverCurrent X

BF2TrigAckRcvd X

BF2GpioAckRcvd X

BF2CtlAckRcvd X

Table 15-1 Interrupt Types

Type R2/R3 Karbon,
Neon, Alta

Aon, Cyton Axion

Ci Signal Functions CiSignalCreate

Version G.8 BitFlow, Inc. SDK-15-7

BF2GpioRcvd X

BF2TrigRcvd X

BF2CtlRspFifoOvf X

BF2CtlReqFifoOvf X

BF2GpioNomatch X

BF2TrigNomatch X

BF2IoackUnknownType X

BF2IoackNomatch X

BF2IoackUnexpectedInt X

BF2IoackNomatch2 X

BF2StrmPktDrop X

BF2StrmNotEnoughDat X

BF2StrmTooMuchDat X

BF2StrmBadCrc X

BF2StrmOverflow X

BF2StrmCorner X

BF2SerdesLostAlign X

BF3UnderCurrent X

BF3OverCurrent X

BF3TrigAckRcvd X

BF3GpioAckRcvd X

BF3CtlAckRcvd X

BF3GpioRcvd X

BF3TrigRcvd X

BF3CtlRspFifoOvf X

BF3CtlReqFifoOvf X

BF3GpioNomatch X

BF3TrigNomatch X

BF3IoackUnknownType X

Table 15-1 Interrupt Types

Type R2/R3 Karbon,
Neon, Alta

Aon, Cyton Axion

CiSignalCreate BitFlow SDK

SDK-15-8 BitFlow, Inc. Version G.8

The following table shows the “Ci” and “Bf” name equivalents. Either name can be
used passed in to this function for the Type parameter.

BF3IoackNomatch X

BF3IoackUnexpectedInt X

BF3IoackNomatch2 X

BF3StrmPktDrop X

BF3StrmNotEnoughDat X

BF3StrmTooMuchDat X

BF3StrmBadCrc X

BF3StrmOverflow X

BF3StrmCorner X

BF3SerdesLostAlign X

Table 15-2 Ci Equivalent Types

“Ci” Type “BF” Type

CiIntTypeHW BFIntTypeHW

CiIntTypeFIFO BFIntTypeFIFO

CiIntTypeDMADone BFIntTypeDMADone

CiIntTypeEOD BFIntTypeEOD

CiIntTypeCTab BFIntTypeCTab

CiIntTypeDMAOnly BFIntTypeDMAOnly

CiIntTypeCCUJ BFIntTypeCCUJ

CiIntTypeCCUK BFIntTypeCCUK

CiIntTypeEOFDMAJ BFIntTypeEOFDMAJ

CiIntTypeEOFDMAK BFIntTypeEOFDMAK

CiIntTypeTrig BFIntTypeTrig

CiIntTypeSerial BFIntTypeSerial

Table 15-1 Interrupt Types

Type R2/R3 Karbon,
Neon, Alta

Aon, Cyton Axion

Ci Signal Functions CiSignalWait

Version G.8 BitFlow, Inc. SDK-15-9

15.3 CiSignalWait

Prototype BFRC CiSignalWait(Bd Board, PCiSIGNAL pSignal, BFU32 TimeOut, PBFU32 pNu-
mInts)

Description Efficiently waits for an interrupt to occur. Returns immediately if one has occurred
since the function was last called.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL previously created by CiSignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout.

pNumInts

Pointer to a BFU32. When the function returns, it will contain the number of interrupts
(the interrupt queue) that have occurred since this function was last called.

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function will return immediately if the interrupt
has occurred since the function was last called with this signal. The first time this func-
tion is called with a given signal, it will always wait, even if the interrupt has occurred
many times in the threads lifetime.

When this function returns, the pNumInts parameter will contain the number of inter-
rupts that have occurred since this function was last called. This is essentially an inter-
rupt queue. Normally this will be one. However, if one or more interrupts have
occurred, the function will return immediately and this variable will indicate the num-

CI_OK Interrupt has occurred.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

BF_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

BF_SIGNAL_CANCEL Signal was canceled by another thread (see CiS-
ignalCancel).

BF_BAD_SIGNAL Signal has not been created correctly or was not
created for this board.

BF_WAIT_FAILED Operating system killed the signal.

CiSignalWait BitFlow SDK

SDK-15-10 BitFlow, Inc. Version G.8

ber that has occurred. This parameter is useful in determining if frames were missed.
This function will continue to return immediately, reducing the number of interrupts in
the queue each time until every interrupt that has occurred has been acknowledged,
and the queue is empty.

To wait for the next interrupt and ignore any previous interrupts, use CiSignalWait-
Next.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

Ci Signal Functions CiSignalWaitEx

Version G.8 BitFlow, Inc. SDK-15-11

15.4 CiSignalWaitEx

Prototype BFRC CiSignalWaitEx(Bd Board, PCiSIGNAL pSignal, BFU32 TimeOut, PBFU32
pNumInts, BFSignalTimeInfoPtr pTimeInfo)

Description Efficiently waits for an interrupt to occur. Returns immediately if one has occurred
since the function was last called. Returns a high accuracy time stamp.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL previously created by CiSignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout.

pNumInts

Pointer to a BFU32. When the function returns, it will contain the number of interrupts
(the interrupt queue) that have occurred since this function was last called.

pTimeInfo

A pointer to a BFSignalTimeInfoRec structure. This structure will be filled out with time
stamp information from when the interrupt occurred.

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function will return immediately if the interrupt
has occurred since the function was last called with this signal. The first time this func-
tion is called with a given signal, it will always wait, even if the interrupt has occurred
many times in the threads lifetime.

CI_OK Interrupt has occurred.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

BF_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

BF_SIGNAL_CANCEL Signal was canceled by another thread (see CiS-
ignalCancel).

BF_BAD_SIGNAL Signal has not been created correctly or was not
created for this board.

BF_WAIT_FAILED Operating system killed the signal.

CiSignalWaitEx BitFlow SDK

SDK-15-12 BitFlow, Inc. Version G.8

When this function returns, the pNumInts parameter will contain the number of inter-
rupts that have occurred since this function was last called. This is essentially an inter-
rupt queue. Normally this will be one. However, if one or more interrupts have
occurred, the function will return immediately and this variable will indicate the num-
ber that has occurred. his parameter is useful in determining if frames were missed.
This function will continue to return immediately, reducing the number of interrupts in
the queue each time until every interrupt that has occurred has been acknowledged,
and the queue is empty.

To wait for the next interrupt and ignore any previous interrupts, use CiSignalWait-
Next.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

The pTimeInfo points to a BFSignalTimeInfoRec structure that is filled out when this
function returns. The time stamp information is extremely accurate as it is captured in
the kernel level ISR when the interrupt actually occurs. The pTimeInfo->TimeStamp
member is the actual time stamp, this is uses the CPU clock. This value is the raw num-
ber of CPU clocks that have occurred since the system booted. You can use the func-
tion BFFine to the current time stamp at the start of a process, the subtract the signals
TimeStamp to the delta between the start and when an interrupt occurred. You can
convert to seconds use the value returned from BFFineRate.

See the SDK example “inttime.c” for an illustration of these functions.

Ci Signal Functions CiSignalNextWait

Version G.8 BitFlow, Inc. SDK-15-13

15.5 CiSignalNextWait

Prototype BFRC CiSignalNextWait(Bd Board, PCiSIGNAL pSignal, BFU32 TimeOut)

Description Like CiSignalWait, this function waits efficiently for an interrupt. However, this version
always ignores any interrupts that might have occurred since it was called last, and
just waits for the next interrupt.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL previously created by CiSignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function waits for the next interrupt, regardless of
the number of interrupts in the signal’s queue. The first time this function is called
with a given signal, it will always wait, even if the interrupt has occurred many times in
the threads lifetime.

Use CiSignalWait if you need a function that will return immediately if an interrupt has
already occurred.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

CI_OK Interrupt has occurred.

BF_BAD_SIGNAL An invalid board handle was passed to the func-
tion.

BF_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

BF_SIGNAL_CANCEL Signal was canceled by another thread (see CiS-
ignalCancel).

BF_BAD_SIGNAL Signal has not been created correctly or was not
created for this board.

BF_WAIT_FAILED Operating system killed the signal.

CiSignalCancel BitFlow SDK

SDK-15-14 BitFlow, Inc. Version G.8

15.6 CiSignalCancel

Prototype BFRC CiSignalCancel(Bd Board, PCiSIGNAL pSignal)

Description Cancels a signal, any CiSignalWaitXXX function will return with a value of BF_SIGNAL_
CANCEL.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL to cancel.

Returns

Comments This function will cancel a signal. It is primarily used by multi threaded applications
where one thread is waiting (with one of the CiSignalWaitXXXX functions) for a signal.
Another thread can cancel the signal with this function, thereby waking up the waiting
thread. When the waiting thread wakes up by CiSignalWaitXXXX function returning,
the return value can be examined. If the return value is BF_SIGNAL_CANCEL, the
thread knows that the signal it was waiting for was canceled, and it can take appropri-
ate action.

This function is usually used as a clean way for the main application thread to tell wait-
ing threads to kill themselves.

Canceling a signal with this function will interfere with its internal interrupt counts.
Therefore, this function should only be called when synchronization with the interrupt
is no longer important and/or the signal is going to be destroyed.

CI_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

Ci Signal Functions CiSignalQueueSize

Version G.8 BitFlow, Inc. SDK-15-15

15.7 CiSignalQueueSize

Prototype BFRC CiSignalQueueSize(Bd Board, PCiSIGNAL pSignal, PBFU32 pNumInts)

Description Reports the current number of interrupts in a signal’s queue.

Parameters Board

Handle to board.

pSignal

Pointer to CISIGNAL whose queue is to be investigated.

pNumInts

When the function returns pNumInts, it will contain the number of interrupts in the
signal’s queue.

Returns

Comments This function returns the number of interrupts in a signal’s queue. This function is use-
ful for testing to see if any interrupts have come in for a given signal, when you do not
want to call one of the CiSignalWaitXXX functions. This function can be called any
time.

CI_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

CiSignalQueueClear BitFlow SDK

SDK-15-16 BitFlow, Inc. Version G.8

15.8 CiSignalQueueClear

Prototype BFRC CiSignalQueueClear(Bd Board, PCiSIGNAL pSignal)

Description Clears interrupts from a single queue.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL whose queue is to be investigated.

Returns

Comments This function clears all of the interrupts for a given signal’s queue. This allows a thread
to wait for the next interrupt to occur. This function is usually only used to resynchro-
nize a signal to the current state of acquisition (i.e., ignore any interrupts that have
occurred in the past) before calling CiSignalWait. To always wait for the next interrupt,
call CiSignalWaitNext.

CI_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

BF_WAIT_FAILED Error clearing queue.

Ci Signal Functions CiSignalFree

Version G.8 BitFlow, Inc. SDK-15-17

15.9 CiSignalFree

Prototype BFRC CiSignalFree(Bd Board, PCiSIGNAL pSignal)

Description Frees all resources used by a signal.

Parameters Board

Handle to board.

pSignal

Pointer to CiSIGNAL whose queue is to be investigated.

Returns

Comments This function frees the resources used by a signal and removes it from the list of sig-
nals that get interrupt notification.

CI_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

CiCallBackAdd BitFlow SDK

SDK-15-18 BitFlow, Inc. Version G.8

15.10 CiCallBackAdd

Prototype BFCAPI CiCallBackAdd(Bd Board, BFU32 SignalType, BFCallBackFuncPtr CallBack-
Func, PBFVOID pUserData)

Description Adds a call back function to the list of call back functions.

Parameters Board

Board ID.

SignalType

Type of interrupt signal used to initiate calling of the call back function. The list of sig-
nals is the same as used in the CiSignalCreate() function. These are also listed in the
header file “CiDef.h”.

Note: You can OR the SignalType paramter with the flag BFCBModeGrabOnly, which
will force the system to only call your call back function when the board is actively
grabbing.

CallBackFunc

This is a pointer to the call back function. The function must have the following format:

void CallBackFunc(Bd Board, BFU32 Num, PBFVOID pUserData);

This function will be called whenever the interrupt of type SignalType occurs. The
Num parameter is the size of the signal queue (i.e. the number of un-handled inter-
rupts left after this one is handled).

pUserData

A pointer to user allocated structure which can contain any context data that might be
needed in the Call Back function when it is actually called. Can be NULL.

Returns

BF_OK Success

BF_NULL_POINTER The parameter CallBackFunc is NULL

BF_BAD_SIGNAL The parameter SignalType is not a valid signal type.

BF_CB_ALREAD_SET There is already a call back function for this signal
type.

THREAD_FAIL The thread required to run the call back system could
not be created

Ci Signal Functions CiCallBackAdd

Version G.8 BitFlow, Inc. SDK-15-19

Comments A call back function is a way for a user’s code to be notified of an event (usually hard-
ware) has occurred on the board. For example, the call back function can be called
every time a new frame has been acquired.

Call back functions can be used instead of the signalling functions (See CiSignalCre-
ate() and associated functions. The advantage of call back functions is that a separate
thread does not need to be created (like the Signal functions). The disadvantage is
that call back functions will execute in a thread whose relative priority is determined
by the call back system, not the user. This means the that user has no control over the
priority of the processing that happens in the call back function. In general, call back
functions are best used in simple applications where thread priority is not critical.

The call back function will be called whenever the interrupt of type SignalType
occurs. The Num parameter is the size of the signal queue (i.e. the number of un-han-
dled interrupts left after this one is handled). This behavior is similar to the Signalling
System, the call back function will be called repeatedly until there are no more inter-
rupts in the queue.

When a call back function is added using this function, the interrupt associated with
the SignalType parameter is automatically enabled on the board.

When the user no longer wants the call back function to be called, or is finished with
the resource, the function CiCallBackRemove() should be called with the same
SignalType as was use to add it.

If you do not wish your call back function to be called when the board is not grabbing,
OR the SignalType parameter with the flag BFCBModeGrabOnly (e.g. BFInt-
TypeEOD | BFCBModeGrabOnly). When this flag is used, your callback function will
only be called when the board is actively grabbing.

The pointer pUserData is designed so that the user can get context information
inside of the call back function (when it is called). This pointer can point to anything
(cast it inside the call back function). It must be allocated and de-allocated by the user.
It can also be NULL.

CiCallBackRemove BitFlow SDK

SDK-15-20 BitFlow, Inc. Version G.8

15.11 CiCallBackRemove

Prototype BFCAPI CiCallBackRemove(Bd Board, BFU32 SignalType)

Description Removes a call back function from the list of call back functions.

Parameters Board

Board ID.

SignalType

Type of interrupt signal used to initiate calling of the call back function. The list of sig-
nals is the same as used in the CiSignalCreate() function. These are also listed in the
header file “CiDef.h”.

Returns

Comments This function removes a call back function from the list of call back functions. Once a
call back function is removed, it will never be called again. A call back function can be
added again using CiCallBackAdd().

For more information on call back function see CiCallBackAdd().

BF_OK Success

Ci Signal Functions CiSignalNameGet

Version G.8 BitFlow, Inc. SDK-15-21

15.12 CiSignalNameGet

Prototype BFRC CiSignalNameGet(Bd Board, BFU32 Type, PBFCHAR SignalName, BFU32
SignalNameSize)

Description Gets the name of a signal given its integer type.

Parameters Board

Handle to board.

Type

The signal to retrieve the name for.

SignalName

A pointer to a string, when the function returns it will contain the name of the give sig-
nal.

SignalNameSize

The size of the buffer pointed to by SignalName.

Returns

Comments This function can be use to fetch the actual human readable name of a signal type.
See the function CiSignalCreate for all possible values.

CI_OK Success.

BF_BAD_ARGS The parameter Type is not a valid signal type.

CiSignalNameGet BitFlow SDK

SDK-15-22 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-16-1

Ci LUTs

Chapter 16

16.1 Introduction

These functions allow an application full control over the Look Up Tables (LUTs) on the
Board. The LutPeek and LutPoke functions are fairly inefficient and should only be used in
the case of modifying a small number of entries. For accessing a larger number of entries
or the entire LUT, create an array on the host and use the CiLutWrite and CiLutRead func-
tions. To create a “ramp” function in the LUTs, use the CiLutRamp function.

Note: Not all BitFlow board’s have LUTs.

CiLutPeek BitFlow SDK

SDK-16-2 BitFlow, Inc. Version G.8

16.2 CiLutPeek

Prototype BFU32 CiLutPeek(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr)

Description Reads a single LUT value.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - peek LUT bank 0
CiLutBank1 - peek LUT bank 1
CiLutBank2 - peek LUT bank 2
CiLutBank3 - peek LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - peek LUT lane 0
CiLutLane1- peek LUT lane 1
CiLutLane2 - peek LUT lane 2
CiLutLane3 - peek LUT lane 3

Addr

LUT address.

Returns

Comments LUT definitions are declared in CiDef.h.

The LUT value. If successful.

CISYS_ERROR_NOTSUP-
PORTED

This function not support for this board type.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

Ci LUTs CiLutPoke

Version G.8 BitFlow, Inc. SDK-16-3

16.3 CiLutPoke

Prototype BFRC CiLutPoke(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 Value)

Description Writes a single LUT value to one or more LUT lanes.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - poke LUT bank 0
CiLutBank1 - poke LUT bank 1
CiLutBank2 - poke LUT bank 2
CiLutBank3 - poke LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - poke LUT lane 0
CiLutLane1- poke LUT lane 1
CiLutLane2 - poke LUT lane 2
CiLutLane3 - poke LUT lane 3

Addr

LUT address.

Value

LUT write value.

Returns

CI_OK Function successful.

CiLutPoke BitFlow SDK

SDK-16-4 BitFlow, Inc. Version G.8

Comments LUT definitions are declared in CiDef.h.

CISYS_ERROR_NOTSUP-
PORTED

This function not support for this board type.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_NO_BIG_LUTS RoadRunner board doesn’t support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_POKE_ERR LUT poke failed.

RV_BAD_BANK Illegal LUT bank.

RV_BAD_LUT_ADDR Illegal LUT address.

RV_LUT_POKE_ERR LUT poke failed.

Ci LUTs CiLutRead

Version G.8 BitFlow, Inc. SDK-16-5

16.4 CiLutRead

Prototype BFRC CiLutRead(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 NumEntries, PBFVOID pDest)

Description Reads a LUT.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - read LUT bank 0
CiLutBank1 - read LUT bank 1
CiLutBank2 - read LUT bank 2
CiLutBank3 - read LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - read LUT lane 0
CiLutLane1 - read LUT lane 1
CiLutLane2 - read LUT lane 2
CiLutLane3 - read LUT lane 3

Addr

LUT address.

NumEntries

Number of LUT entries to read.

CiLutRead BitFlow SDK

SDK-16-6 BitFlow, Inc. Version G.8

pDest

Storage for LUT entries. The size of the destination is based on the LUT mode being
used and the NunEntries. If CiLut8Bit LUT mode is being used, memory should be
allocated for NumEntries of the BFU8 data type (a byte). Both CiLut12Bit and
CiLut16Bit modes should use NumEntries of the BFU16 data type (a word). A exam-
ple of the usage would be:

BFU8 LUT8[256]; // CiLut8Bit LUT mode.
BFU16 LUT16[4096]; // CiLut12Bit and CiLut16Bit LUT modes

Returns

Comments LUT definitions are declared in CiDef.h.

CI_OK Function successful.

CISYS_ERROR_BAD_
BOARDPTR

This function not support for this board type.

CISYS_ERROR_NOTSUP-
PORTED

The R64 dose not support this function.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_NO_BIG_LUTS RoadRunner board doesn’t support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_TOO_MANY_LANES Only one lane may be read at a time.

R2_LUT_READ_ERR LUT read failed.

RV_BAD_BANK Illegal LUT bank

RV_BAD_LUT_ADDR Illegal LUT address.

RV_TOO_MANY_LANES Only one lane may be read at a time.

RV_LUT_READ_ERR LUT read failed.

Ci LUTs CiLutWrite

Version G.8 BitFlow, Inc. SDK-16-7

16.5 CiLutWrite

Prototype BFRC CiLutWrite(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 NumEntries, PBFVOID pSource)

Description Writes a LUT.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - write LUT bank 0
CiLutBank1 - write LUT bank 1
CiLutBank2 - write LUT bank 2
CiLutBank3 - write LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - write LUT lane 0
CiLutLane1- write LUT lane 1
CiLutLane2 - write LUT lane 2
CiLutLane3 - write LUT lane 3

Addr

LUT address.

NumEntries

Number of LUT entries to write.

CiLutWrite BitFlow SDK

SDK-16-8 BitFlow, Inc. Version G.8

pSource

Storage LUT data. The size of the source is based on the LUT mode being used and
the NunEntries. If CiLut8Bit LUT mode is being used, memory should be allocated
for NumEntries of the BFU8 data type (a byte). Both CiLut12Bit and CiLut16Bit
modes should use NumEntries of the BFU16 data type (a word). A example of the
usage would be:

BFU8 LUT8[256]; // CiLut8Bit LUT mode.
BFU16 LUT16[4096]; // CiLut12Bit and CiLut16Bit LUT modes.

Returns

Comments LUT definitions are declared in CiDef.h.

CI_OK Function successful.

CISYS_ERROR_NOTSUP-
PORTED

This function not support for this board type.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_NO_BIG_LUTS RoadRunner board doesn’t support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_WRITE_ERR LUT write failed.

RV_BAD_BANK Illegal LUT bank.

RV_BAD_LUT_ADDR Illegal LUT address.

RV_LUT_WRITE_ERR LUT write failed.

Ci LUTs CiLutFill

Version G.8 BitFlow, Inc. SDK-16-9

16.6 CiLutFill

Prototype BFRC CiLutFill(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr, BFU32
NumEntries, BFU32 Val)

Description Fills a LUT with a constant.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - fill LUT bank 0
CiLutBank1 - fill LUT bank 1
CiLutBank2 - fill LUT bank 2
CiLutBank3 - fill LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - fill LUT lane 0
CiLutLane1- fill LUT lane 1
CiLutLane2 - fill LUT lane 2
CiLutLane3 - fill LUT lane 3

Addr

LUT address.

NumEntries

Number of LUT entries to fill.

Val

Fill value.

CiLutFill BitFlow SDK

SDK-16-10 BitFlow, Inc. Version G.8

Returns

Comments LUT definitions are declared in CiDef.h.

CI_OK Function successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

This function not support for this board type.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_NO_BIG_LUTS RoadRunner board doesn’t support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_FILL_ERR LUT fill failed.

RV_BAD_BANK Illegal LUT bank.

RV_BAD_LUT_ADDR Illegal LUT address.

RV_LUT_FILL_ERR LUT fill failed.

Ci LUTs CiLutRamp

Version G.8 BitFlow, Inc. SDK-16-11

16.7 CiLutRamp

Prototype BFRC CiLutRamp(Bd Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Star-
tAddr, BFU32 EndAddr, BFU32 StartVal, BFU32 EndVal)

Description Fills a LUT with a ramp.

Parameters Board

Bd Board ID.

Mode

LUT Mode:

CiLut8Bit - peek an 8-bit value out of an 8-bit LUT.
CiLut12Bit - peek an 16-bit value out of an 12-bit LUT.
CiLut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

CiLutBank0 - ramp LUT bank 0
CiLutBank1 - ramp LUT bank 1
CiLutBank2 - ramp LUT bank 2
CiLutBank3 - ramp LUT bank 3

Lane

One or more LUT lanes ORed together:

CiLutLane0 - ramp LUT lane 0
CiLutLane1- ramp LUT lane 1
CiLutLane2 - ramp LUT lane 2
CiLutLane3 - ramp LUT lane 3

StartAddr

LUT start address.

EndAddr

LUT end address.

StartVal

LUT start value.

CiLutRamp BitFlow SDK

SDK-16-12 BitFlow, Inc. Version G.8

EndVal

LUT end value.

Returns

Comments LUT definitions are declared in CiDef.h.

CI_OK Function successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

This function not support for this board type.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_NO_BIG_LUTS RoadRunner board doesn’t support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_FILL_ERR LUT fill failed.

RV_BAD_BANK Illegal LUT bank.

RV_BAD_LUT_ADDR Illegal LUT address.

RV_LUT_RAMP_ERR LUT ramp failed.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-17-1

Ci Acquisition

Chapter 17

17.1 Introduction

The Acquisition Functions are some of the most important in the BitFlow SDK. While the
initialization functions set up the board’s registers for a particular camera, these functions
do most of the work required to get the board ready to DMA the images to memory.

The functions are organized into three groups:

Setup functions
Command function
Clean up functions

The concept here is that the setup functions are time and CPU intensive, so they should
be called before any time critical processing has begun. In a sense, these are extensions
of the initialization process. Once the setup functions are called for a particular buffer,
they need not be called again.

The command function is designed to be used during time critical operations, and
require minimal CPU time. They can be told to return immediately so that other opera-
tions can be performed simultaneously with acquisition. The command function can be
called over and over, as many times as needed, to acquire into the buffers locked down in
the setup functions.

The cleanup functions free up any resources allocated in the setup functions, and put the
DMA engine in an idle mode. If the clean up functions are not called, then it is possible
that large amounts of memory will not be freed up.

For example, the basic flow of a program would be:

CiBrdOpen
CiAqSetup

Loop
{

CiAqCommand
}

CiAqCleanup
CiBrdClose

The bulk of the work is done in the CiAqSetup functions. These functions create a scatter
gather table based on the virtual memory address, called a relative QTab.

Introduction BitFlow SDK

SDK-17-2 BitFlow, Inc. Version G.8

The relative QTab is passed to the kernel driver, where the destination buffer is locked
down (so that it cannot be paged to disk) and the physical address are determined for
each page of the buffer (NT usually uses 4096 byte pages). These physical addresses
are used to build a physical QTab. This physical QTab is then written to the board in
preparation scatter gather DMAing.

Finally, the DMA engine is initialized and started. Again, this function need be called
only once, for a particular destination buffer.

This function also supports setting up acquisition to a set of up to four buffers. In this
case, the setup functions are called multiple times, once for each buffer in the set.
Whenever an application is finished acquiring to a buffer or a set of buffers, one of the
CiAqCleanUp functions must be called. You cannot call CiAqSetup for a different buf-
fer or set of buffers before calling CiAqCleanUp for the previous buffer or set of buf-
fers. When using buffers sets, CiAqCleanUp need only be called once to cleanup
from any number of calls to CiAqSetup.

The CiAqCommand can be called either synchronously or asynchronously. In the syn-
chronous case, the function does not return until the command has completed. In the
asynchronous case, the function returns as soon as the command has been issued to
the board. If you need to synchronize your process with the acquisition, you can use
the CiAqWaitDone function or you can use the signaling system. Signaling is the best
way to synchronize to the end of frame signals as they do not take any CPU cycles.

Ci Acquisition CiAqSetup

Version G.8 BitFlow, Inc. SDK-17-3

17.2 CiAqSetup

Prototype BFRC CiAqSetup(Bd Board, PBFVOID pDest, BFU32 DestSize, BFS32 Stride, BFU32
DestType,BFU32 LutBank,BFU32 LutMode,BFU8 QuadBank, BFBOOL FirstBank,
BFU32 QTabMode, BFU32 AqEngine)

Description Sets up the board for acquisition to a host buffer. This function must be called before
any acquisition command is issued.

Parameters Board

Handle to board.

pDest

A void pointer to the destination buffer (already allocated).

DestSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in bytes, a pointer
would have to be increased to move to the next line. Normally, this number is equal to
the X size of the image. This value can be negative for images that need to be loaded
upside down. When acquiring to host memory, this value can be zero, and the func-
tion will calculate the Stride for you.

DestType

Note: RoadRunner specific.

Type of destination memory:

CiDMADataMem - host memory
CiDMABitmap - display memory

LutBank

The LUT bank to pass the image through:

CiLutBank0 - LUT bank 0
CiLutBank1 - LUT bank 1
CiLutBank2 - LUT bank 2
CiLutBank3 - LUT bank 3
CiLutBypass - bypass LUTs

CiAqSetup BitFlow SDK

SDK-17-4 BitFlow, Inc. Version G.8

LutMode

The mode of the LUT to use:

CiLut8Bit - LUT bank 0
CiLut12Bit - LUT bank 1
CiLut16Bit - LUT bank 2

QuadBank

The Quad bank used to store the QTABs build by this function:

CiQTabBank0 - Quad bank 0
CiQTabBank1 - Quad bank 1
CiQTabBank2 - Quad bank 2
CiQTabBank3 - Quad bank 3

FirstBank

For acquisition to single buffer, set to TRUE.

For acquisition using two or more ping-pong buffers, this parameter is used to indi-
cate which buffer will be acquired into first:

TRUE - for first bank to acquire into.
FALSE - for subsequent banks.

QtabMode

The QTab mode:

CiQTabModeOneBank - the entire quad table is one bank.
CiQTabModeTwoBanks - the quad table is divided into two banks.
CiQTabModeFourBanks - the quad table is divided into four banks.

AqEngine

The acquisition engine to set up:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

CI_OK If successful.

CISYS_ERROR_
UNKNOWN_PARAMETER

The parameter to inquire about is not recognized.
Check that the parameter is valid for the board being
used.

Ci Acquisition CiAqSetup

Version G.8 BitFlow, Inc. SDK-17-5

Comments This function sets up the board’s acquisition systems for acquisition to host. It will set
up QTABs (relative and physical) and write them to the board. The QTABs are based
on the current camera pointer in the board structure. This function only needs to be
called once, before acquisition begins. It does not need to be called again unless
CiAqCleanUp is called. CiAqCleanUp should be called when done acquiring in order
to free up resources used by this process. The only reason to call this function again is
to acquire into a different host buffer or acquire with a different type of camera. Once
this function is called, the function CiAqCommand is used to snap, grab, freeze or
abort acquisition.

The two acquisition engines on the Raven are completely independent. Each engine
can be in a different acquisition state (snap, grab, abort, or freeze). It is recommend
that both engines be set up before issuing a command to either one. Typically, each
engine works with its own camera (or set of cameras). In other words, if only one cam-
era is connected to the board, only one acquisition engine is needed. The connec-
tions between camera ports and acquisition engines is established in the camera
configuration file and/or the registers. In general, the camera file will dictate whether
or not one or two acquisition engines are available or needed.

If you are setting up acquisition for N buffers (where N can be up to 4), call this func-
tion N times, once for each buffer. For the first call to this function, you must set First-
Bank = TRUE. In all subsequent calls (for the same set of buffers) this parameter must
set to FALSE. If you are using two buffers, then QTabMode should equal CiQTabMo-
deTwoBanks, and for three or four buffers, QTabMode should equal CiQTabMode-
FourBanks. Use the function CiAqNextBankSet to tell the board which buffer of the set
should be the next buffer acquired into. When you are setting up a set of buffers, you
will call this function two to four times, but you only need to call CiAqCleanUp once
per acquisition engine to clean up the resources for the whole set of buffers.

When using board QTABs with the Raven, there is one block of memory that can be
divided into one, two or four memory banks. The two acquisition engines on the
Raven share this block of memory. When using both acquisition engines, at a mini-
mum, the QTab bank mode must use two banks where one engine is using one mem-
ory bank and the other engine is using the other bank. When using both acquisition
engines with ping-ponging between two memory banks, the QTab bank mode must
use four banks, where each engine is using two memory banks and ping-pongs
between the two.

R64_BAD_ALLOC Resources required for this operation could not be
allocated.

R64_CON_QTAB_BANK_
ERR

The QuadBank parameter is invalid.

R64_AQSETUP_FAIL Other failure.

RV_BAD_ALLOC Resources required for this operation could not be
allocated.

RV_CON_QTAB_BANK_
ERR

The QuadBank parameter is invalid.

RV_AQSETUP_FAIL Other failure.

CiAqSetup BitFlow SDK

SDK-17-6 BitFlow, Inc. Version G.8

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Ci Acquisition CiAqSetup2Brds

Version G.8 BitFlow, Inc. SDK-17-7

17.3 CiAqSetup2Brds

Prototype BFRC CiAqSetup2Brds(Bd Board1, Bd Board2, PBFVOID pDest, BFU32 DestSize,
BFS32 Stride, BFU32 DestType,BFU32 LutBank,BFU32 LutMode,BFU8 QuadBank,
BFBOOL FirstBank, BFU32 QTabMode, BFU32 AqEngine)

Description Sets up two boards for acquisition to the same host buffer. This function must be
called before any acquisition command is issued. The function is for use with special
“2x” firmware.

Parameters Board1

Handle to board one.

Board2

Handle to board two.

pDest

A void pointer to the destination buffer (already allocated).

DestSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in bytes, a pointer
would have to be increased to move to the next line. Normally, this number is equal to
the X size of the image. This value can be negative for images that need to be loaded
upside down. When acquiring to host memory, this value can be zero, and the func-
tion will calculate the Stride for you.

DestType

Note: RoadRunner specific.

Type of destination memory:

CiDMADataMem - host memory
CiDMABitmap - display memory

LutBank

The LUT bank to pass the image through:

CiLutBank0 - LUT bank 0
CiLutBank1 - LUT bank 1
CiLutBank2 - LUT bank 2

CiAqSetup2Brds BitFlow SDK

SDK-17-8 BitFlow, Inc. Version G.8

CiLutBank3 - LUT bank 3
CiLutBypass - bypass LUTs

LutMode

The mode of the LUT to use:

CiLut8Bit - LUT bank 0
CiLut12Bit - LUT bank 1
CiLut16Bit - LUT bank 2

QuadBank

The Quad bank used to store the QTABs build by this function:

CiQTabBank0 - Quad bank 0
CiQTabBank1 - Quad bank 1
CiQTabBank2 - Quad bank 2
CiQTabBank3 - Quad bank 3

FirstBank

For acquisition to single buffer, set to TRUE.

For acquisition using two or more ping-pong buffers, this parameter is used to indi-
cate which buffer will be acquired into first:

TRUE - for first bank to acquire into.
FALSE - for subsequent banks.

QtabMode

The QTab mode:

CiQTabModeOneBank - the entire quad table is one bank.
CiQTabModeTwoBanks - the quad table is divided into two banks.
CiQTabModeFourBanks - the quad table is divided into four banks.

AqEngine

The acquisition engine to set up:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

CI_OK If successful.

Ci Acquisition CiAqSetup2Brds

Version G.8 BitFlow, Inc. SDK-17-9

Comments This function is for use with special “2x” firmware. This firmware sets the board up to
use two DMA engines with one camera. This is for cameras that are too fast for one
DMA engine. Both Board1 and Board2 must be opened an initialized separately.
Both boards must be set up with the same basic camera configuration file.

Both acquistions engines are programed to DMA into the same host buffers as indi-
cated by the pDest parameter. Generally, one board DMAs the even lines to the host
buffer and the other board DMAs the odd lines.

Once acquisition is setup using this function, only the master board needs to be con-
trolled using the acquisition command functions. When the 2x firmware is used, the
slave acquisition commands are control by the master.

When you are finished acquiring to this buffer, you must call CiAqCleanUp2Brds to
release the resources allocated for this board.

For more information on the other parameters use by this functoin, see the function
CiAqSetup.

CISYS_ERROR_
UNKNOWN_PARAMETER

The parameter to inquire about is not recognized.
Check that the parameter is valid for the board being
used.

R64_BAD_ALLOC Resources required for this operation could not be
allocated.

R64_CON_QTAB_BANK_
ERR

The QuadBank parameter is invalid.

R64_AQSETUP_FAIL Other failure.

RV_BAD_ALLOC Resources required for this operation could not be
allocated.

RV_CON_QTAB_BANK_
ERR

The QuadBank parameter is invalid.

RV_AQSETUP_FAIL Other failure.

CiAqCommand BitFlow SDK

SDK-17-10 BitFlow, Inc. Version G.8

17.4 CiAqCommand

Prototype BFRC CiAqCommand(Bd Board, BFU32 Command, BFU32 Mode, BFU8 Quad-
Bank, BFU32 AqEngine)

Description Once the board is set up for acquisition with CiAqSetup, this function issues the actual
acquisition command.

Parameters Board

Handle to board.

Command

Acquisition command to initiate:

CiConGrab - starting at the beginning of the next frame, acquire every
frame.

CiConSnap - starting at the beginning of the next frame, acquire one
frame.

CiConFreeze - stop acquiring at the end of the current frame. If in between
frames, do not acquire any more frames.

CiConAbort - stop acquiring immediately. If in the middle of the frame,
the rest of the frame will not be acquired.

CiConReset - reset conditions after an abort or overflow. The board is set
up as it was when CiAqSetup was called.

Mode

This function can operate in two modes:

CiConAsync - as soon as the command is issued return.
CiConWait - wait for the current command to complete. For a snap, the

function will return when the entire frame has been acquired into mem-
ory. For a grab, the function will wait until the first frame has begun to
be acquired. For a freeze, the function waits for the current frame to
end. All other commands return immediately.

QuadBank

QTab bank to start acquisition with:

CiQTabBank0 - Quad bank 0
CiQTabBank1 - Quad bank 1
CiQTabBank2 - Quad bank 2
CiQTabBank3 - Quad bank 3

AqEngine

The acquisition engine to issue the command to:

Ci Acquisition CiAqCommand

Version G.8 BitFlow, Inc. SDK-17-11

AqEngJ - the J engine.
AqEngK - the K engine.

Returns

Comments This function can only be called after CiAqSetup is called. CiAqSetup need only be
called once for any number and combination of calls to CiAqCommand. Basically, you
call CiAqSetup once for a given host buffer, then call CiAqCommand as many times
as you need to get data into that buffer. Call CiAqCleanUp when you are done acquir-
ing into that buffer. Then the procedure starts over again for the next buffer.

The CiAqXXXX commands handle both DMA and camera acquisition. No other com-
mands are needed to handle the process of acquiring into memory.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_

PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R64_AQ_NOT_SETUP CiAqSetup has not yet been called and the
board is not ready for an acquisition command.

R64_BAD_AQ_CMD A snap or grab command has already been
issued and the board is already acquiring.

R64_BAD_STOP The function was unable to reset the board.

R64_CON_QTAB_BANK_ERR The QuadBank parameter is incorrect.

R64_BAD_DMA_SETUP The board has not been set up properly for DMA.

RV_AQSTRT_TIMEOUT A time-out occurred waiting for acquisition to
begin.

RV_AQEND_TIMEOUT A time-out occurred waiting for acquisition to
end.

RV_AQ_NOT_SETUP CiAqSetup has not yet been called and the
board is not ready for an acquisition command.

RV_BAD_AQ_CMD A snap or grab command has already been
issued and the board is already acquiring.

RV_BAD_STOP The function was unable to reset the board.

RV_CON_QTAB_BANK_ERR The QuadBank parameter is incorrect.

RV_BAD_DMA_SETUP The board has not been set up properly for DMA.

RV_AQSTRT_TIMEOUT A time-out occurred waiting for acquisition to
begin.

RV_AQEND_TIMEOUT A time-out occurred waiting for acquisition to
end.

CiAqCommand BitFlow SDK

SDK-17-12 BitFlow, Inc. Version G.8

If you call this function with Mode = CiConWait, it will wait for the acquisition to com-
plete, in the case of a snap or freeze command, or wait for the acquisition to begin, in
the case of a grab command. This is an efficient wait that consumes minimal CPU
cycles. The function will return when the last pixel has been DMAed into memory.
Alternatively, you can call the function with Mode = CiConAsync, and the function will
return as soon as the command has been issued. You can find out how much data has
been DMAed by calling CiAqProgress. You can also just wait for the end of acquisition
by calling CiAqWaitDone.

The functions mentioned above use the SDK’s signaling system to efficiently wait for
events. If you wish to have a higher level of control you can call the CiSignalXXXX
functions yourself. These functions use a signaling system that allow processes to be
notified of board events and interrupts. For acquisition, wait for the CiIntTypeEOD sig-
nal. This signal occurs at the end of every frame (or field for interlaced cameras), in
both grab and snap mode. This signal occurs when the last pixel is DMAed into mem-
ory.

Calling this function with Command = CiConAbort will stop acquisition immediately.
The acquisition process can be left anywhere in the frame. You must call this function
with Command = CiConReset before any more acquire commands can be issued.
Alternatively, you can call CiAqCleanUp and start over with CiAqSetup.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Ci Acquisition CiAqCleanUp

Version G.8 BitFlow, Inc. SDK-17-13

17.5 CiAqCleanUp

Prototype BFRC CiAqCleanUp(Bd Board, BFU32 AqEngine)

Description Frees all resources used by the acquisition process. Makes sure the board is in a sta-
ble state.

Parameters Board

Handle to board.

AqEngine

The acquisition engine to clean up:

AqEngJ - the J engine.
AqEngK - the K engine.

Returns

Comments This function frees all of the resources that were allocated in CiAqSetup for a particu-
lar acquisition engine. If you called CiAqSetup for a set of buffers, you only need to
call this function once to clean up resource for the entire set. Do not call this function
unless you have already called CiAqSetup, and unless you are finished acquiring into
the current buffer.

This function does not free the destination buffer passed to CiAqSetup in the pDest
parameter.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CiAqCleanUp2Brds BitFlow SDK

SDK-17-14 BitFlow, Inc. Version G.8

17.6 CiAqCleanUp2Brds

Prototype BFRC CiAqCleanUp2Brds(Bd Board1, B2 Board2, BFU32 AqEngine)

Description Frees all resources used by the acquisition process when CiAqSetup2Brds was called.
The function is for use with special “2x” firmware.

Parameters Board1

Handle to board one.

Board2

Handle to board two.

AqEngine

The acquisition engine to clean up:

AqEngJ - the J engine.
AqEngK - the K engine.

Returns

Comments This function frees all of the resources that were allocated in CiAqSetup2Brds. Do not
call this function unless you have already called CiAqSetup2Brds, and unless you are
finished acquiring into the current buffer.

This function does not free the destination buffer passed to CiAqSetup2Brds in the
pDest parameter.

For a detailed description of the parameters used by this function, see CiAqCleanup.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Ci Acquisition CiAqWaitDone

Version G.8 BitFlow, Inc. SDK-17-15

17.7 CiAqWaitDone

Prototype BFRC CiAqWaitDone(Bd Board, BFU32 AqEngine)

Description Waits for the current acquisition to complete

Parameters Board

Handle to board.

AqEngine

The acquisition engine to clean up:

AqEngJ - the J engine.
AqEngK - the K engine.

Returns

Comments This function efficiently waits for the current acquisition of the given AqEngine to
complete. The completion is signaled by the last pixel being DMAed into memory.
The function will return with a time-out error if the acquisition has not been com-
pleted by the designated acquisition time-out amount. This time is normally set in the
camera configuration file, but can be changed in software as well, see CiCamSetTime-
out. This function will return immediately if the acquisition has already completed.
This function will also return immediately (with an error code), if the board is in a state
where acquisition will not complete without further acquisition commands, such as
when the board is in grab mode.

CI_OK The current acquisition has completed.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R64_AQ_NOT_SETUP The acquisition process has not been set up yet.

R64_BAD_WAIT The board is currently in grab mode and acquisi-
tion will not end, or there is another acquisition
command pending after this one is completed.

R64_AQEND_TIMEOUT The acquisition time-out expired before the
acquisition command completed.

RV_AQ_NOT_SETUP The acquisition process has not been set up yet.

RV_BAD_WAIT The board is currently in grab mode and acquisi-
tion will not end, or there is another acquisition
command pending after this one is completed.

RV_AQEND_TIMEOUT The acquisition time-out expired before the
acquisition command completed.

CiAqWaitDone BitFlow SDK

SDK-17-16 BitFlow, Inc. Version G.8

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Ci Acquisition CiAqNextBankSet

Version G.8 BitFlow, Inc. SDK-17-17

17.8 CiAqNextBankSet

Prototype BFRC CiAqNextBankSet(Bd Board, BFU8 QuadBank, BFU32 AqEngine)

Description For double buffered acquisition, this function sets up the board for the next QTab
bank to use for acquisition.

Parameters Board

Handle to board.

QuadBank

Next QTab bank to use for acquire - must be 0 or 1:

CiQTabBank0 - Quad bank 0
CiQTabBank1 - Quad bank 1
CiQTabBank2 - Quad bank 2
CiQTabBank3 - Quad bank 3

AqEngine

The acquisition engine to check to progress on:

AqEngJ - the J engine.
AqEngK - the K engine.

Returns

Comments This function sets the next QTab bank to use for acquisition. The RoadRunner has two
QTab banks that can be loaded for two destinations that can be loaded for multiple
destinations by calling CiAqSetup more than once. By default, the board will use the
same bank continuously. This function can be called any time during the current
frame, the bank switch will only happen at the beginning of the next frame.

You must call CiAqSetup more than once (each time with the parameter QuadBank
set to a different bank), before using this function. Switching to a QTab bank that has
not been loaded will cause unpredictable behavior.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

Function no supported on the installed frame
grabber model.

CISYS_ERROR_UNKNOWN_

PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

CiAqNextBankSet BitFlow SDK

SDK-17-18 BitFlow, Inc. Version G.8

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Note: This function should only be used with the R3 and RoadRunner families.

Ci Acquisition CiAqFrameSize

Version G.8 BitFlow, Inc. SDK-17-19

17.9 CiAqFrameSize

Prototype BFRC CiAqFrameSize(Bd Board, BFU32 XSize, BFU32 YSize, BFU32 AqEngine)

Description This function provides the ability to change the image height and image width.

Parameters Board

Handle to board.

XSize

The image width in pixels.

YSize

The image height in lines.

AqEngine

The Acquisition Engine to Set up:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_

PARAMETER

An invalid parameter was specified.

R2_BAD_FRM_SIZE Invalid frame size. The frame can be too big or
small, or the XSize is not a multiple of 4.

R2_CAM_SUPPORT Cam file being used is not supported by this
function.

R2_HCTAB_X16 Pixel clock divided by 16 is not supported.

R2_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R2_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/
or HStop.

BF_BAD_ALLOC Couldn’t allocate memory.

R64_BAD_FRM_SIZE Invalid frame size. The frame can be too big or
small, or the XSize is not a multiple of 4.

CiAqFrameSize BitFlow SDK

SDK-17-20 BitFlow, Inc. Version G.8

Comments This function gives the ability to change the size of the image being acquired on the
fly, from software. With this function the size of the frame can be changed on the fly,
without the use of camera files. This function is limited to use with only free run cam-
era files, and may not work with sophisticated camera files.

This function can be called before CiAqSetup and the new size will overwrite the size
specified by the camera file. To change the size after CiAqSetup has been called
CiAqCleanup must be called then CiAqFrameSize and CiAqSetup. The following is an
example of the order needed to change the size of the frame after CiAqSetup has
been called:

// Stop acquisition
CiAqCleanUp
CiAqFrameSize
CiAqSetup
// Begin acquisition

For a complete example on how to use the CiAqFrameSize function, see the CiChang-
eSize example included in the SDK.

For the R2, the minimum XSize is 4 and a minimum YSize of 2. The maximum YSize is
32768 and the maximum XSize is 8192. This function will return a R2_BAD_FRM_SIZE
error for any of these problems. Another precaution to take is that the XSize needs to
be a multiple of 4. Any XSize value that is not a multiple of 4 will give a R2_BAD_FRM_
SIZE error. The R2 only supports a pixel clock divided by 4. If the pixel clock divided
by 16 is being used, error R2_HCTAB_X16 will be returned.

For the R64, the minimum XSize is 8 pixels and a minimum YSize of 1 line. The maxi-
mum YSize and XSize is 131,072 lines and pixels. This function will return a R64_BAD_
FRM_SIZE error for any problems with the size of the frame. Another precaution to
take is that the XSize needs to be a multiple of the pixels per clock. Any XSize value
that is not a multiple of the pixels per clock will give a R64_BAD_FRM_SIZE error.

It is left up to the user not to exceed the sensor size of the camera. For example if the
user is using a area scan camera with a sensor size of 640x480 and tries to make the
frame size 800x600, this function will try to acquire the 800x600 frame size even
though the camera can not provide it. The user will end up with a scrambled or unsta-
ble image if this occurs.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

R64_CAM_SUPPORT Cam file being used is not supported by this
function.

R64_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R64_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/
or HStop.

R64_BAD_CNF_FILE Could not determine the pixels per clock from
the camera file.

Ci Acquisition CiAqLastLine

Version G.8 BitFlow, Inc. SDK-17-21

17.10 CiAqLastLine

Prototype BFRC CiAqLastLine(Bd Board, PBFU32 pCurLine, BFU32 AqEngine)

Description Returns the number of lines that have been acquired.

Parameters Board

Handle to board.

pCurLine

Pointer to the last line number.

AqEngine

The Acquisition Engine to Set up:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

Comments This functions returns the line number of the last line in the frame. The returned value
is actually the Vertical CTAB counter value for the last line. If the camera being used is
a line scan cameras then this value will be equivalent to the line number. However, for
area scan camera the start of the vertical active region will have to be subtracted from
the returned value (usually the vertical active region starts at 0x1000).

This function is most useful when acquiring variable sized images and thus the frame
size is unknown. This function will return the value from the last frame up until the end
of the following frame. In other words, the value of the last line stays constant for the
entire duration of the next frame. Once the next frame ends, then the last line is the
value for that frame.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

CI_OK If successfully.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

The model does not support this function.

CISYS_ERROR_UNKNOWN_

PARAMETER

An invalid parameter was specified.

CiAqReengage BitFlow SDK

SDK-17-22 BitFlow, Inc. Version G.8

17.11 CiAqReengage

Prototype BFRC CiAqReengage(Bd Board, BFU8 QuadBank, BFU32 AqEngine)

Description Engages the physical QTab for the given bank.

Parameters Board

Handle to board.

QuadBank

The next physical QTab bank to use.

AqEngine

The Acquisition Engine to Set up:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_UNKNOWN_

PARAMETER

An invalid parameter was specified.

R64_BAD_CON_PARAM QuadBank is not equal to R64QTabBank0 or
R64QTabBank1

R64_AQ_NOT_SETUP R64AqSetup has not yet been called and the
board is not ready for an acquisition command.

BF_NULL_POINTER ChainArray is NULL.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has
already been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board.

BF_QUAD_GOING Attempt to engage QTab when board is DMAing.

BF_BAD_CHAIN Attempting to select a frame number when there
is only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

Ci Acquisition CiAqReengage

Version G.8 BitFlow, Inc. SDK-17-23

Comments This function is used to engage the physical QTab for the bank specified by the Quad-
Bank parameter. This function only needs to be used if the acquisition or the DMA is
aborted in the middle of the frame (for example, when using start-stop triggering).
This function is intended to be used with qtabs on the host. However, calling it with
board qtabs will not cause any problems.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Currently CiAqReengage is not supported by the Raven.

CiAqROISet BitFlow SDK

SDK-17-24 BitFlow, Inc. Version G.8

17.12 CiAqROISet

Prototype BFRC CiAqROISet(Bd Board, BFU32 XOffset, BFU32 YOffset, BFU32 XSize, BFU32
YSize, BFU32 AqEngine)

Description This function provides the ability to change the image height and image width.

Parameters Board

Handle to board.

XOffset

The number of pixels to offset in the x-axis.

YOffset

The number of pixels to offset in the y-axis.

XSize

The value to change the XSize too.

YSize

The value to change the YSize too.

AqEngine

The Acquisition Engine to use:

AqEngJ - use the J engine.
AqEngK - use the K engine.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_

PARAMETER

An invalid parameter was specified.

R2_BAD_FRM_SIZE Invalid frame size. The frame can be too big or
small, or the XSize is not a multiple of 4.

R2_CAM_SUPPORT Cam file being used is not supported by this
function.

R2_HCTAB_X16 Pixel clock divided by 16 is not supported.

Ci Acquisition CiAqROISet

Version G.8 BitFlow, Inc. SDK-17-25

Comments This function gives the ability to change the size of the image being acquired on the
fly, from software. With this function the size of the frame can be changed on the fly,
without the use of camera files. This function is limited to use with only free run cam-
era files, and may not work with sophisticated camera files.

This function can be called before CiAqSetup and the new size will overwrite the size
specified by the camera file. To change the size after CiAqSetup has been called
CiAqCleanup must be called then CiAqFrameSize and CiAqSetup. The following is an
example of the order needed to change the size of the frame after CiAqSetup has
been called:

// Stop acquisition
CiAqCleanUp
CiAqFrameSize
CiAqSetup
// Begin acquisition

For the R2, the minimum XSize is 4 and a minimum YSize of 2. The maximum YSize is
32768 and the maximum XSize is 8192. This function will return a R2_BAD_FRM_SIZE
error for any of these problems. Another precaution to take is that the XSize needs to
be a multiple of 4. Any XSize value that is not a multiple of 4 will give a R2_BAD_FRM_
SIZE error. The R2 only supports a pixel clock divided by 4. If the pixel clock divided
by 16 is being used, error R2_HCTAB_X16 will be returned.

For the R64, the minimum XSize is 8 pixels and a minimum YSize of 1 line. The maxi-
mum YSize and XSize is 131,072 lines and pixels. This function will return a R64_BAD_
FRM_SIZE error for any problems with the size of the frame. Another precaution to
take is that the XSize needs to be a multiple of the pixels per clock. Any XSize value
that is not a multiple of the pixels per clock will give a R64_BAD_FRM_SIZE error.

R2_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R2_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/
or HStop.

BF_BAD_ALLOC Couldn’t allocate memory.

R64_BAD_FRM_SIZE Invalid frame size. The frame can be too big or
small, or the XSize is not a multiple of 4.

R64_CAM_SUPPORT Cam file being used is not supported by this
function.

R64_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R64_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/
or HStop.

R64_BAD_CNF_FILE Could not determine the pixels per clock from
the camera file.

RV_BAD_FRM_SIZE Invalid frame size. The frame can be to big or
small, or the XSize is not a multiple of 4.

RV_CAM_SUPPORT Cam file being used is not supported by this
function.

CiAqROISet BitFlow SDK

SDK-17-26 BitFlow, Inc. Version G.8

It is left up to the user not to exceed the sensor size of the camera. For example if the
user is using a area scan camera with a sensor size of 640x480 and tries to make the
frame size 800x600, this function will try to acquire the 800x600 frame size even
though the camera can not provide it. The user will end up with a scrambled or unsta-
ble image if this occurs.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-18-1

Ci Mid-Level Control Functions

Chapter 18

18.1 Introduction

These functions are used to control the board at a lower level than the high level func-
tions, for example, CiAqCommand. In general, an application should not need to use
these functions unless special circumstances exist. These functions talk directly to the
hardware and make no assumptions about how the rest of the board is set up. Generally,
it is a bad idea to mix high-level functions and these mid-level functions.

CiConAqCommand BitFlow SDK

SDK-18-2 BitFlow, Inc. Version G.8

18.2 CiConAqCommand

Prototype BFRC CiConAqCommand(Bd Board, BFU32 Command, BFU32 AqEngine)

Description Sends an acquisition command to the board.

Parameters Board

Handle to board.

Command

Command send to board:

CiConSnap - snap one frame.
CiConGrab - start continuous acquisition.
CiConFreeze - stop continuous acquisition at the end of the current frame.
CiConAbort - stop acquisition immediately.

AqEngine

The acquisition engine to send command to:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

Comments This function sends an acquisition command directly to the hardware. This is a low-
level function and makes no assumptions about the state of the rest of the board.

This command returns immediately.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Unknown Command parameter.

R64_BAD_CON_PARAM Unknown Command parameter.

GN2_BAD_CON_PARAM Unknown Command parameter.

Ci Mid-Level Control Functions CiConAqStatus

Version G.8 BitFlow, Inc. SDK-18-3

18.3 CiConAqStatus

Prototype BFRC CiConAqStatus(Bd Board, PBFU32 pStatus BFU32 AqEngine)

Description Gets the current acquisition state of the board.

Parameters Board

Handle to board.

PStatus

When this function returns it contains the status of the board. The status will be one of
the following:

CiConFreeze - the board is not acquiring.
CiConSnap - the board is currently acquiring one frame.
CiConGrab - the board is currently in continuous acquisition mode.

AqEngine

The acquisition engine get the status of:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

Comments This function returns the current acquisition status of the board.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

CiConInt BitFlow SDK

SDK-18-4 BitFlow, Inc. Version G.8

18.4 CiConInt

Prototype BFRC CiConInt(Bd Board, BFU32 IntType, BFU32 Action)

Description Disables or enables individual hardware interrupts.

Parameters Board

Handle to board.

IntType

Type of interrupt. See Table 15-1 for a complete list of interrupt types.

Action

Indicates whether to enable or disable the interrupt:

CiConEnable - enable the interrupt.
CiConDisable - disable the interrupt.

Returns

Comments This function enables or disables the specified hardware interrupt for being invoked
on the PCI bus. The driver always has an interrupt service (ISR) routine ready to han-
dle any interrupts that come in. The driver’s ISR will automatically reset the appropri-
ate interrupt bits on the board when an interrupt occurs.

To receive notification of interrupts at the user application level, use the signaling sys-
tem (see the CiSignalXXXX functions). These functions automatically enable the
appropriate interrupt when the signal is created, so you do not have to call this func-
tion to use an interrupt with the signaling system. However, you can use this function
to enable and disable interrupts, based on your application needs, without creating
and destroying signals. As a general rule, you should disable any interrupts that you
are not using. Every interrupt uses a certain amount of CPU time, even if no applica-
tion is waiting for it.

When the board is initialized, by default, all interrupts are turned off.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R2_BAD_CON_PARAM Either the parameter IntType or Action is
unknown.

R64_BAD_CON_PARAM Either the parameter IntType or Action is
unknown.

GN2_BAD_CON_PARAM Either the parameter IntType or Action is
unknown.

Ci Mid-Level Control Functions CiConInt

Version G.8 BitFlow, Inc. SDK-18-5

Note: Not all board families have all of the listed interrupts. Please check the
appropriate hardware manuals for complete details.

CiConVTrigModeSet BitFlow SDK

SDK-18-6 BitFlow, Inc. Version G.8

18.5 CiConVTrigModeSet

Prototype BFRC CiConVTrigModeSet(Bd Board, BFU32 TrigMode, BFU32 TrigAssignments,
BFU32 TrigAPolarity, BFU32 TrigBPolarity)

Description Sets the trigger mode and polarities for the acquisition engine(s).

Parameters Board

Handle to board.

TrigMode

Trigger mode to put the board into:

CITrigIgnore - no changes to the trigger mode will be made.
CiTrigFreeRun - no trigger is used, board free runs.
CiTrigOneShotSelfTriggered - self triggering one shot mode.
CiTrigOneShot - one shot mode, for asynchronously resettable cameras.
CiTrigAqCmd - triggered acquire command mode, non-resettable cam-

eras.
CiTrigSnapQualified - designed for use with cameras that cannot be asyn-

chronously reset. When the board is in this mode, it will snap one
frame every time the trigger asserts.

CiTrigContinuousData - for continuous data sources.
CiTrigContinuousDataQualified - This is similar to CiTrigContinuousData.

However the data is qualified with another incoming signal.
CiTrigOneShotStartAStopA - one shot mode, where frame starts with the

assertion of trigger A and ends de-assertion of trigger A.
CiTrigOneShotStartAStopALevel - exactly like CiTrigOneShotStartAStopA

except that if the trigger is still high after the current frame has been
acquired, the board will acquire the next frame.

CiTrigNTGOneShot- Trigger triggers NTG.
BFTrigTriggeredGrab - one shot mode, where board goes into grab

modes with the assertion of trigger A and freezes acquisition with the
de-assertion of trigger A.

TrigAssignments

Note: This parameter is only used with the Raven. For all boards this parameter should
be set to zero.

Controls which triggers go to which acquisition engine:

CiTrigJandKSameSource - both J and K are run by same trigger(s).
CiTrigJbyAandKbyB - J is run by TRIGGERA and K by TRIGGERB.
CiTrigJbyAandKFreerun - J is trigger and K free runs.

Ci Mid-Level Control Functions CiConVTrigModeSet

Version G.8 BitFlow, Inc. SDK-18-7

TrigAPolarity

Polarity for trigger A:

CiTrigAssertedHigh - TRIGGERA is asserted on rising edge.
CiTrigAssertedLow - TRIGGERA is asserted on falling edge.

TrigBPolarity

Note: This parameter is only used with the Raven. For all boards this parameter should
be set to zero.

Polarity for trigger B:

CiTrigAssertedHigh - TRIGGERB is asserted on rising edge.
CiTrigAssertedLow - TRIGGERB is asserted on falling edge.

Returns

Comments Some board families have two trigger inputs, others have only one. The effect each
trigger has on the board depends on the trigger mode, which is controlled by this
function. Each trigger can be caused by an external hardware signal (on TRIGGERA
and TRIGGERB pins respectively) or an internal software trigger (see the function
CiConSwTrig). Both types of triggers effect the board in the same way. However, the
parameters: TrigAPolarity and TrigBPolarity only have meaning with respect to
external hardware triggers. The effect of each trigger for the various modes is
explained in the following tables.

This function works in conjunction with the camera configuration files. It is important
to understand that not all cameras support all triggering modes. Usually a particular
camera will only support one or two triggering modes. Furthermore, a different cam-
era configuration file is usually needed for each triggering mode. For example, a cam-
era will almost always have a free running configuration file, useful for set up and
offline testing. A camera may also have a one shot file, which would be used in time-

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConVTrigModeSet BitFlow SDK

SDK-18-8 BitFlow, Inc. Version G.8

critical applications. You cannot usually put the board, set up by the free running file,
into one shot mode because the latter mode requires special triggering signals to be
sent to the camera. However, you can put the board, set up by a one shot file, into self
triggering one shot mode. This is useful for camera set up and system debugging.

The exception to the paragraph above is the triggered acquire command mode,
which will work with all cameras. This mode is really no different than just issuing an
acquisition command at a specific point in time in the future. When the board is in this
mode, an acquisition command is written by the host but not latched. Basically, the
board is armed but does not acquire any data. When the trigger is asserted the com-
mand latches. Once the command is latched, it acts as it normally does, that is, the
board starts acquiring data at the start of the next frame from the camera. The only
acquisition commands that are affected are snap and grab. The freeze and abort com-
mands work normally, and do not need a trigger to be latched. The disadvantage of
this mode is that it can add up to a frame time of latency to any trigger, because the
camera’s timing is not being reset.

If you want to find out what mode the board is in, call the function CiConVTrigMode-
Get.

Note: This function only controls how the board is vertically triggered. Vertical triggers
cause the board to acquire a whole frame from an area camera or a number of lines
from a line scan camera.

Note: You must enable the connection of the external trigger with the acquisition
engines with the function CiConExTrigConnect. The software triggers are always
available.

Note: Not all combinations of TrigMode and TrigAssignments are possible

Note: In the mode, CiTrigOneShotSelfTriggered, the acquisition engine(s)
continuously self trigger(s) at the maximum possible rate

Table 18-1 shows which modes are available on which board families.

Table 18-1 Trigger Mode Availability

Mode R2/R3 Karbon/
Alta/Neon

Aon/Axion/
Cyton

CiTrigFreeRun Yes Yes Yes

CiTrigAqCmd Yes Yes No

CiTrigAqCmdStartStop Yes No No

CiTrigOneShot Yes Yes Yes

CiTrigOneShotSelfTriggered Yes Yes Yes

CiTrigOneShotStartAStopA Yes Yes Yes

Ci Mid-Level Control Functions CiConVTrigModeSet

Version G.8 BitFlow, Inc. SDK-18-9

Table 18-2 and Table 18-3 show the effects of the assertion and de-assertion of the
trigger in all of these various modes for the Road Runner/R3.

CiTrigOneShotStartAStopALevel No Yes Yes

CiTriggerSnap No Yes No

CiTrigContinuousData Yes Yes No

CiTrigContinuousDataQualified No Yes No

Table 18-2 Assertion of Triggers for the Road Runner/R3

TrigMode Trigger A asserts Trigger B asserts

CiTrigFreeRun No effect No effect

CiTrigAqCmd Last acquisition com-
mand (Snap, Grab,
etc.) is initiated.

No effect

CiTrigAqCmdStartStop Board goes into grab
mode.

No effect

CiTrigOneShot One frame is
acquired from cam-
era.

No effect

CiTrigOneShotSelfTriggered No effect No effect

CiTrigOneShotStartAStopA Board starts acquir-
ing lines. Will stop
when max is reached
or Trigger A de-
asserts.

No effect

CiTrigOneShotStartAStopB Board starts acquir-
ing lines. Will stop
when max is reached
or Trigger B asserts.

Board stops acquir-
ing lines.

CiTrigContinuousData Board starts acquir-
ing continuous date.

No effect

Table 18-3 De-assertion of Triggers for Road Runner/R3

TrigMode Trigger A deasserts

CiTrigOneShotStartAStopA Board Stops acquir-
ing lines.

CiTrigAqCmdStartStop Board goes into
freeze mode.

Table 18-1 Trigger Mode Availability

Mode R2/R3 Karbon/
Alta/Neon

Aon/Axion/
Cyton

CiConVTrigModeSet BitFlow SDK

SDK-18-10 BitFlow, Inc. Version G.8

Table 18-4 and Table 18-5 show the effects of the assertion and de-assertion of the
trigger in all of these various modes for theR46/Karbon/Alta/Neon.

Table 18-6 and Table 18-7 show the effects of the assertion and de-assertion of the
trigger in all of these various modes for the Aon/Axion/Cyton.

Table 18-4 Assertion of Triggers for the R64/Karbon/Alta/Neon

TrigMode Trigger A asserts

CiTrigFreeRun No effect

CiTrigOneShot One frame is acquired from camera.

CiTrigOneShotSelfTriggered No effect

CiTrigOneShotStartAStopA Board starts acquiring lines. Will stop when
max is reached or Trigger A de-asserts.

CiTrigOneShotStartAStopAL-
evel

Board starts acquiring lines. Will stop when
trigger A de-asserts.

CiTriggeredSnap Board starts acquiring lines. Will stop when
max is reached or Trigger B asserts.

CiTrigContinuousData Board starts acquiring continuous date.

CiTrigContinuousDataQuali-
fied

Board starts acquiring continuous date.

Table 18-5 De-assertion of Triggers for R64/Karbon/Alta/Neon

TrigMode Trigger A deasserts

CiTrigOneShotStartAStopA Board Stops acquiring lines.

CiTrigAqCmdStartStop Board goes into freeze mode.

Table 18-6 Assertion of Triggers for the Aon/Axion/Cyton

TrigMode Trigger A asserts

CiTrigFreeRun No effect

CiTrigOneShot One frame is acquired from camera.

CiTrigOneShotSelfTriggered No effect

CiTrigOneShotStartAStopA Board starts acquiring lines. Will stop when
max is reached or Trigger A de-asserts.

CiTrigOneShotStartAStopALevel Board starts acquiring lines. Will stop when
trigger A de-asserts.

Ci Mid-Level Control Functions CiConVTrigModeSet

Version G.8 BitFlow, Inc. SDK-18-11

Table 18-7 De-assertion of Triggers for Aon/Axion/Cyton

TrigMode Trigger A deasserts

CiTrigOneShotStartAStopA Board Stops acquiring lines.

CiTrigOneShotStartAStopALevel Board Stops acquiring lines.

CiConVTrigModeSetEx BitFlow SDK

SDK-18-12 BitFlow, Inc. Version G.8

18.6 CiConVTrigModeSetEx

Prototype BFRC CiConVTrigModeSetEx(Bd Board, BFU32 TrigMode, BFU32 TrigAssign-
ments, BFU32 TrigAPolarity, BFU32 TrigBPolarity, BFU32 TrigSelect)

Description Similar to CiContVTrigModeSet except adds the ability to select the trigger source.

Parameters Board

Handle to board.

TrigMode

Trigger mode to put the board into, see CiContVTrigModeSet.

TrigAssignments

Controls which triggers go to which acquisition engine, see CiContVTrigModeSet.

TrigAPolarity

Polarity for trigger A, , see CiContVTrigModeSet.

TrigBPolarity

Polarity for trigger B, see CiContVTrigModeSet.

TrigSelect

Selects the trigger source.

For Road Runner/R3

CiTrigDiff - Differential trigger
CiTrigTTL - TLL trigger
CiTrigOpto - Opto-isolated trigger
CiIgnore - No change to trigger selection

For Karbon/Alta/Neon/R64

CiTrigDiff - Differential trigger
CiTrigTTL - TLL trigger
CiTrigOpto - Opto-isolated trigger
CiTrigFVAL - Trigger is the FVAL signal on the CL cable
CiTrigNTG - NTG is trigger source
CiIgnore - No change to trigger selection

For Aon/Axion/Cyton

CiTrigDiff - Differential trigger
CiTrigTTL - TLL trigger

Ci Mid-Level Control Functions CiConVTrigModeSetEx

Version G.8 BitFlow, Inc. SDK-18-13

CiTrigNTG, BFTrigTSCT0 - NTG/TS is trigger source
CiTrigVFG0TrigSel - Use same trigger as VFG 0
CiTrigButton - Trigger is button
CiTrigCXPTriggerIn - Trigger is CXP trigger (from camera)
CiTrigSWTrigger - Trigger is software trigger
CiTrigScanStep - Trigger comes from quad. encoder circuit in scan step

mode
CiTrigNTGVFG0, BFTrigVFG0TSCT0 - Trigger is NTG/TS of VFG 0
CiIgnore - No change to trigger selection

Returns

Comments This function is identical to CiConVTrigModeSet except that it allows the trigger
source to be programmed.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConVTrigModeGet BitFlow SDK

SDK-18-14 BitFlow, Inc. Version G.8

18.7 CiConVTrigModeGet

Prototype BFRC CiConVTrigModeGet(Bd Board, PBFU32 TrigMode, PBFU32 TrigAssign-
ments, PBFU32 TrigAPolarity, PBFU32 TrigBPolarity)

Description Gets the current trigger mode and polarities for both acquisition engines.

Parameters Board

Handle to board.

TrigMode

Returns the current trigger mode for acquisition engine J. See CiContVTrigModeSet
for more information.

TrigAssignments

Note: This parameter is only used with the Raven. For all boards the value returned in
this parameter will have not meaning.

Returns the current assignments of triggers to acquisition engines:

CiTrigJandKSameSource - both J and K are run by same trigger(s).
CiTrigJbyAandKbyB - J is run by TRIGGERA and K by TRIGGERB.
CiTrigJbyAandKFreerun – J is trigger and K free runs.

TrigAPolarity

Returns the current polarity for trigger A:

CiTrigAssertedHigh - trigger A is asserted on rising edge.
CiTrigAssertedLow - trigger A is asserted on falling edge.

TrigBPolarity

Note: This parameter is only used with the Raven. For all boards the value returned in
this parameter will have not meaning.

Returns the current polarity for trigger B:

CiTrigAssertedHigh - trigger B is asserted on rising edge.
CiTrigAssertedLow - trigger B is asserted on falling edge.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Ci Mid-Level Control Functions CiConVTrigModeGet

Version G.8 BitFlow, Inc. SDK-18-15

Comments This function returns the current state of the trigger circuitry for both acquisition
engines. See the function CiConVTrigModeSet for a complete description of the
modes.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConVTrigModeGetEx BitFlow SDK

SDK-18-16 BitFlow, Inc. Version G.8

18.8 CiConVTrigModeGetEx

Prototype BFRC CiConVTrigModeGetEx(Bd Board, PBFU32 TrigMode, PBFU32 TrigAssign-
ments, PBFU32 TrigAPolarity, PBFU32 TrigBPolarity, PBFU32 TrigSelect)

Description Similar to CIVonVTrigModeGet but also supports getting of the trigger source.

Parameters Board

Handle to board.

TrigMode

Returns the current trigger mode for acquisition engine J. See CiContVTrigModeSet
for more information.

TrigAssignments

Note: This parameter is only used with the Raven. For all boards the value returned in
this parameter will have not meaning.

Returns the current assignments of triggers to acquisition engines:

CiTrigJandKSameSource - both J and K are run by same trigger(s).
CiTrigJbyAandKbyB - J is run by TRIGGERA and K by TRIGGERB.
CiTrigJbyAandKFreerun – J is trigger and K free runs.

TrigAPolarity

Returns the current polarity for trigger A:

CiTrigAssertedHigh - trigger A is asserted on rising edge.
CiTrigAssertedLow - trigger A is asserted on falling edge.

TrigBPolarity

Note: This parameter is only used with the Raven. For all boards the value returned in
this parameter will have not meaning.

Returns the current polarity for trigger B:

CiTrigAssertedHigh - trigger B is asserted on rising edge.
CiTrigAssertedLow - trigger B is asserted on falling edge.

TrigSelect

Returns the trigger source.

For Road Runner/R3

CiTrigDiff - Differential trigger

Ci Mid-Level Control Functions CiConVTrigModeGetEx

Version G.8 BitFlow, Inc. SDK-18-17

CiTrigTTL - TLL trigger
CiTrigOpto - Opto-isolated trigger

For Karbon/Alta/Neon/R64

CiTrigDiff - Differential trigger
CiTrigTTL - TLL trigger
CiTrigOpto - Opto-isolated trigger
CiTrigFVAL - Trigger is the FVAL signal on the CL cable
CiTrigNTG - NTG is trigger source

For Aon/Axion/Cyton

CiTrigDiff - Differential trigger
CiTrigTTL - TLL trigger
CiTrigNTG, BFTrigTSCT0 - NTG/TS is trigger source
CiTrigVFG0TrigSel - Use same trigger as VFG 0
CiTrigButton - Trigger is button
CiTrigCXPTriggerIn - Trigger is CXP trigger (from camera)
CiTrigSWTrigger - Trigger is software trigger
CiTrigScanStep - Trigger comes from quad. encoder circuit in scan step

mode
CiTrigNTGVFG0, BFTrigVFG0TSCT0 - Trigger is NTG/TS of VFG 0

Returns

Comments This function is similar to CiConVTrigModeGet expect also supported getting of the
selected trigger source.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConHTrigModeSet BitFlow SDK

SDK-18-18 BitFlow, Inc. Version G.8

18.9 CiConHTrigModeSet

Prototype BFRC CiConHTrigModeSet(Bd Board, BFU32 EncMode, BFU32 EncPolarity, BFU32
EncSelect)

Description Sets the horizontal trigger mode and polarities for the acquisition engine.

Parameters Board

Handle to board.

EncMode

The horizontal triggering mode:

CiEncFreeRun – no line trigger is used, board free runs.
CiEncOneShot – horizontal one shot mode, every line needs a line trigger.
CiEncOneShotSelfTriggered – self triggering one shot mode..

EncPolarity

Polarity for all line triggers:

CiEncAssertedHigh - line triggers are asserted on rising edge.
CiEncAssertedLow - line triggers are asserted on falling edge.

EncSelect

Type of encoder.

For all boards:

CiIgnore - Do not make change to the select encoder

For R2/R3:

CiEncA - Encoder A is active and B is disabled
CiEncAlt1 - Reserved.
CiEncAlt2 - Reserved.
CiEncAlt3 - Reserved.

For Karbon/R64/Neon:

CiEncTTL - Single ended TTL level encoder
CiEncDiff - Differential (LVDS) encoder
CiEncOpto - Optocoupled encoder

For Aon/Axion/Cyton:

CiEncTTL - Single ended TTL level encoder

Ci Mid-Level Control Functions CiConHTrigModeSet

Version G.8 BitFlow, Inc. SDK-18-19

CiEncDiff - Differential (LVDS) encoder
CiEncVFG0EncASel - Selected encoder on VFG0
CiEncNTG, BFEncTSCT0 - NTG/TS is encoder
CiEncButton - The boards buttong is the encoder
CiEncCXPTriggerIn - CXP trigger is the encoder (from camera)
CiEncSWEncoderA - Software encocder A is the encoder
CiEncNTGVFG0, BFEncVFG0TsCT0 - NTG/TS from VFG0

Returns

Comments

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM One of the parameters is not valid or the particu-
lar combination of parameters is not possible.

R64_BAD_CON_PARAM One of the parameters is not valid or the particu-
lar combination of parameters is not possible.

GN2_BAD_CON_PARAM One of the parameters is not valid or the particu-
lar combination of parameters is not possible.

CiConHTrigModeGet BitFlow SDK

SDK-18-20 BitFlow, Inc. Version G.8

18.10 CiConHTrigModeGet

Prototype BFRC CiConHTrigModeGet(Bd Board, PBFU32 EndMode, PBFU32 EncPolarity,
PBFU32 EncSelect)

Description Gets the current horizontal encoder mode and polarity of the encoder.

Parameters Board

Handle to board.

EncMode

Returns the current encoder mode:

CiEncFreeRun – no line trigger is used, board free runs.
CiEncOneShot – horizontal one shot mode, every line needs a line trigger.
CiEncOneShotSelfTriggered – self triggering one shot mode.

EncPolarity

Returns the current polarity for the encoder:

CiEncAssertedHigh - trigger A is asserted on rising edge.
CiEncAssertedLow - trigger A is asserted on falling edge.

EncSelect

Type of encoder.

For all boards:

CiIgnore - Do not make change to the select encoder

For R2/R3:

CiEncA - Encoder A is active and B is disabled
CiEncAlt1 - Reserved.
CiEncAlt2 - Reserved.
CiEncAlt3 - Reserved.

For Karbon-CL/R64/Neon:

CiEncTTL - Single ended TTL level encoder
CiEncDiff - Differential (LVDS) encoder
CiEncOpto - Optocoupled encoder

For Aon/Axion/Cyton:

CiEncTTL - Single ended TTL level encoder

Ci Mid-Level Control Functions CiConHTrigModeGet

Version G.8 BitFlow, Inc. SDK-18-21

CiEncDiff - Differential (LVDS) encoder
CiEncVFG0EncASel - Selected encoder on VFG0
CiEncNTG, BFEncTSCT0 - NTG/TS is encoder
CiEncButton - The boards buttong is the encoder
CiEncCXPTriggerIn - CXP trigger is the encoder (from camera)
CiEncSWEncoderA - Software encocder A is the encoder
CiEncNTGVFG0, BFEncVFG0TSCT0 - NTG/TS from VFG0

Returns

Comments

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConTriggerInputGet BitFlow SDK

SDK-18-22 BitFlow, Inc. Version G.8

18.11 CiConTriggerInputGet

Prototype BFRC CiConTriggerInputGet(Bd Board, PBFU32 TrigSelect, PBFU32 TrigPolarity)

Description Gets the current source for the trigger input and the trigger polarity.

Parameters Board

Handle to board.

TrigSelect

Returns the currently selected trigger input (not all options are available on all mod-
els):

BFTrigDiff
BFTrigTTL
BFTrigOpto
BFTrigFVAL
BFTrigVFG0TrigSel
BFTrigNTG
BFTrigButton
BFTrigCXPTriggerIn
BFTrigSWTrigger
BFTrigScanStep
BFTrigNTGVFG0
BFTrigLow
BFTrigHigh
BFTrigTSCT0
BFTrigVFG0TSCT0
BFTrigBoxInTTL0
BFTrigBoxInTTL1
BFTrigBoxInTTL2
BFTrigBoxInTTL3
BFTrigBoxInTTL4
BFTrigBoxInTTL5
BFTrigBoxInTTL6
BFTrigBoxInTTL7
BFTrigBoxInTTL8
BFTrigBoxInTTL9
BFTrigBoxInTTL10
BFTrigBoxInTTL11
BFTrigBoxInDiff0
BFTrigBoxInDiff1
BFTrigBoxInDiff2
BFTrigBoxInDiff3
BFTrigBoxInDiff4
BFTrigBoxInDiff5
BFTrigBoxInDiff6
BFTrigBoxInDiff7

Ci Mid-Level Control Functions CiConTriggerInputGet

Version G.8 BitFlow, Inc. SDK-18-23

BFTrigBoxInDiff8
BFTrigBoxInDiff9
BFTrigBoxInDiff10
BFTrigBoxInDiff11
BFTrigBoxInOpto0
BFTrigBoxInOpto1
BFTrigBoxInOpto2
BFTrigBoxInOpto3
BFTrigBoxInOpto4
BFTrigBoxInOpto5
BFTrigBoxInOpto6
BFTrigBoxInOpto7
BFTrigBoxIn24V0
BFTrigBoxIn24V1
BFTrigBoxIn24V2
BFTrigBoxIn24V3
BFTrigUnknown

TrigPolarity

Returns the current polarity for the trigger:

BFTrigAssertedHigh - trigger is asserted on rising edge.
BFTrigAssertedLow - trigger is asserted on falling edge.

Returns

Comments This function is similar to CiConVTrigModeGet(), however, CiConTriggerInputGet()
does not return the current trigger (VTrig) mode.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

CiConTriggerInputSet BitFlow SDK

SDK-18-24 BitFlow, Inc. Version G.8

18.12 CiConTriggerInputSet

Prototype BFRC CiConTriggerInputSet(Bd Board, BFU32 TrigSelect, BFU32 TrigPolarity)

Description Sets the current source for the trigger input and the trigger polarity.

Parameters Board

Handle to board.

TrigSelect

Sets the source of the trigger input (not all options are available on all models):

BFTrigDiff
BFTrigTTL
BFTrigOpto
BFTrigFVAL
BFTrigVFG0TrigSel
BFTrigNTG
BFTrigButton
BFTrigCXPTriggerIn
BFTrigSWTrigger
BFTrigScanStep
BFTrigNTGVFG0
BFTrigLow
BFTrigHigh
BFTrigTSCT0
BFTrigVFG0TSCT0
BFTrigBoxInTTL0
BFTrigBoxInTTL1
BFTrigBoxInTTL2
BFTrigBoxInTTL3
BFTrigBoxInTTL4
BFTrigBoxInTTL5
BFTrigBoxInTTL6
BFTrigBoxInTTL7
BFTrigBoxInTTL8
BFTrigBoxInTTL9
BFTrigBoxInTTL10
BFTrigBoxInTTL11
BFTrigBoxInDiff0
BFTrigBoxInDiff1
BFTrigBoxInDiff2
BFTrigBoxInDiff3
BFTrigBoxInDiff4
BFTrigBoxInDiff5
BFTrigBoxInDiff6
BFTrigBoxInDiff7

Ci Mid-Level Control Functions CiConTriggerInputSet

Version G.8 BitFlow, Inc. SDK-18-25

BFTrigBoxInDiff8
BFTrigBoxInDiff9
BFTrigBoxInDiff10
BFTrigBoxInDiff11
BFTrigBoxInOpto0
BFTrigBoxInOpto1
BFTrigBoxInOpto2
BFTrigBoxInOpto3
BFTrigBoxInOpto4
BFTrigBoxInOpto5
BFTrigBoxInOpto6
BFTrigBoxInOpto7
BFTrigBoxIn24V0
BFTrigBoxIn24V1
BFTrigBoxIn24V2
BFTrigBoxIn24V3
BFTrigUnknown

TrigPolarity

Sets the trigger polarity:

BFTrigAssertedHigh - trigger is asserted on rising edge.
BFTrigAssertedLow - trigger is asserted on falling edge.

Returns

Comments This function is similar to CiConVTrigModeSet(), however, CiConTriggerInputSet()
does change the current trigger (VTrig) mode.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

GN2_BAD_CON_PARAM One of the input parameters was incorrect

R64_BAD_CON_PARAM One of the input parameters was incorrect

CiConEncoderInputGet BitFlow SDK

SDK-18-26 BitFlow, Inc. Version G.8

18.13 CiConEncoderInputGet

Prototype BFRC CiConEncoderInputGet(Bd Board, PBU32 Encoder, PBFU32 EncSelect,
PBFU32 EncPolarity)

Description Gets the current source for the encoder input and the encoder polarity.

Parameters Board

Handle to board.

Encoder

Which encoder to get the input source for:

BFTypeEncA
BFTypeEncB

EncSelect

Returns the currently selected trigger input (not all options are available on all mod-
els):

BFEncDiff
BFEncTTL
BFEncOpto
BFEncLow
BFEncHigh
BFEncAlt
BFEncVFG0EncASel
BFEncVFG0EncBSel
BFEncNTG
BFEncButton
BFEncCXPEncgerIn
BFEncSWEncoderA
BFEncSWEncoderB
BFEncScanStep
BFEncNTGVFG0
BFEncTSCT0
BFEncVFG0TSCT0
BFEncBoxInTTL0
BFEncBoxInTTL1
BFEncBoxInTTL2
BFEncBoxInTTL3
BFEncBoxInTTL4
BFEncBoxInTTL5
BFEncBoxInTTL6
BFEncBoxInTTL7
BFEncBoxInTTL8
BFEncBoxInTTL9

Ci Mid-Level Control Functions CiConEncoderInputGet

Version G.8 BitFlow, Inc. SDK-18-27

BFEncBoxInTTL10
BFEncBoxInTTL11
BFEncBoxInDiff0
BFEncBoxInDiff1
BFEncBoxInDiff2
BFEncBoxInDiff3
BFEncBoxInDiff4
BFEncBoxInDiff5
BFEncBoxInDiff6
BFEncBoxInDiff7
BFEncBoxInDiff8
BFEncBoxInDiff9
BFEncBoxInDiff10
BFEncBoxInDiff11
BFEncBoxInOpto0
BFEncBoxInOpto1
BFEncBoxInOpto2
BFEncBoxInOpto3
BFEncBoxInOpto4
BFEncBoxInOpto5
BFEncBoxInOpto6
BFEncBoxInOpto7
BFEncBoxIn24V0
BFEncBoxIn24V1
BFEncBoxIn24V2
BFEncBoxIn24V3
BFEncUnknown

EncPolarity

Returns the current polarity for the trigger:

CiEncAssertedHigh - Encoder is asserted on rising edge.
CiEncAssertedLow - Encoder is asserted on falling edge.

Returns

Comments This function is similar to CiConHTrigModeGet(), however, CiConEncoderInputGet()
does not return the current encoder (HTrig) mode.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

CiConEncoderInputSet BitFlow SDK

SDK-18-28 BitFlow, Inc. Version G.8

18.14 CiConEncoderInputSet

Prototype BFRC CiConEncoderInputSet(Bd Board, PBU32 Encoder, PBFU32 EncSelect,
PBFU32 EncPolarity)

Description Sets the current source for the encoder input and the encoder polarity.

Parameters Board

Handle to board.

Encoder

Which encoder to get the input source for:

BFTypeEncA
BFTypeEncB

EncSelect

The source to set for the encoder input (not all options are available on all models):

BFEncDiff
BFEncTTL
BFEncOpto
BFEncLow
BFEncHigh
BFEncAlt
BFEncVFG0EncASel
BFEncVFG0EncBSel
BFEncNTG
BFEncButton
BFEncCXPEncgerIn
BFEncSWEncoderA
BFEncSWEncoderB
BFEncScanStep
BFEncNTGVFG0
BFEncTSCT0
BFEncVFG0TSCT0
BFEncBoxInTTL0
BFEncBoxInTTL1
BFEncBoxInTTL2
BFEncBoxInTTL3
BFEncBoxInTTL4
BFEncBoxInTTL5
BFEncBoxInTTL6
BFEncBoxInTTL7
BFEncBoxInTTL8
BFEncBoxInTTL9
BFEncBoxInTTL10

Ci Mid-Level Control Functions CiConEncoderInputSet

Version G.8 BitFlow, Inc. SDK-18-29

BFEncBoxInTTL11
BFEncBoxInDiff0
BFEncBoxInDiff1
BFEncBoxInDiff2
BFEncBoxInDiff3
BFEncBoxInDiff4
BFEncBoxInDiff5
BFEncBoxInDiff6
BFEncBoxInDiff7
BFEncBoxInDiff8
BFEncBoxInDiff9
BFEncBoxInDiff10
BFEncBoxInDiff11
BFEncBoxInOpto0
BFEncBoxInOpto1
BFEncBoxInOpto2
BFEncBoxInOpto3
BFEncBoxInOpto4
BFEncBoxInOpto5
BFEncBoxInOpto6
BFEncBoxInOpto7
BFEncBoxIn24V0
BFEncBoxIn24V1
BFEncBoxIn24V2
BFEncBoxIn24V3
BFEncUnknown

EncPolarity

The encoder polarity to use:

CiEncAssertedHigh - Encoder is asserted on rising edge.
CiEncAssertedLow - Encoder is asserted on falling edge.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConEncoderInputSet BitFlow SDK

SDK-18-30 BitFlow, Inc. Version G.8

Comments This function is similar to CiConHTrigModeSet(), however, CiConEncoderInputSet()
does not take the current encoder (HTrig) mode.

Ci Mid-Level Control Functions CiConTriggerInputSet

Version G.8 BitFlow, Inc. SDK-18-31

18.15 CiConTriggerInputSet

Prototype BFRC CiConTriggerInputSet(Bd Board, BFU32 TrigSelect, BFU32 TrigPolarity)

Description Sets the current source for the trigger input and the trigger polarity.

Parameters Board

Handle to board.

TrigSelect

Sets the source of the trigger input (not all options are available on all models):

BFTrigDiff
BFTrigTTL
BFTrigOpto
BFTrigFVAL
BFTrigVFG0TrigSel
BFTrigNTG
BFTrigButton
BFTrigCXPTriggerIn
BFTrigSWTrigger
BFTrigScanStep
BFTrigNTGVFG0
BFTrigLow
BFTrigHigh
BFTrigTSCT0
BFTrigVFG0TSCT0
BFTrigBoxInTTL0
BFTrigBoxInTTL1
BFTrigBoxInTTL2
BFTrigBoxInTTL3
BFTrigBoxInTTL4
BFTrigBoxInTTL5
BFTrigBoxInTTL6
BFTrigBoxInTTL7
BFTrigBoxInTTL8
BFTrigBoxInTTL9
BFTrigBoxInTTL10
BFTrigBoxInTTL11
BFTrigBoxInDiff0
BFTrigBoxInDiff1
BFTrigBoxInDiff2
BFTrigBoxInDiff3
BFTrigBoxInDiff4
BFTrigBoxInDiff5
BFTrigBoxInDiff6
BFTrigBoxInDiff7

CiConTriggerInputSet BitFlow SDK

SDK-18-32 BitFlow, Inc. Version G.8

BFTrigBoxInDiff8
BFTrigBoxInDiff9
BFTrigBoxInDiff10
BFTrigBoxInDiff11
BFTrigBoxInOpto0
BFTrigBoxInOpto1
BFTrigBoxInOpto2
BFTrigBoxInOpto3
BFTrigBoxInOpto4
BFTrigBoxInOpto5
BFTrigBoxInOpto6
BFTrigBoxInOpto7
BFTrigBoxIn24V0
BFTrigBoxIn24V1
BFTrigBoxIn24V2
BFTrigBoxIn24V3
BFTrigUnknown

TrigPolarity

Sets the trigger polarity:

CiEncAssertedHigh - trigger A is asserted on rising edge.
CiEncAssertedLow - trigger A is asserted on falling edge.

Returns

Comments This function is similar to CiConVTrigModeGet(), however, CiConTriggerInputGet()
does not return the current trigger (VTrig) mode.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

GN2_BAD_CON_PARAM One of the input parameters was incorrect

R64_BAD_CON_PARAM One of the input parameters was incorrect

Ci Mid-Level Control Functions CiConSwTrig

Version G.8 BitFlow, Inc. SDK-18-33

18.16 CiConSwTrig

Prototype BFRC CiConSwTrig(Bd Board, BFU32 Triggers, BFU32 AssertType)

Description Performs a software trigger.

Parameters Board

Handle to board.

Triggers

Trigger to assert:

CiTrigA – software trigger A.
CiTrigB – software trigger B.

AssertType

Type of assertion:

CiTrigAssert - assert the trigger.
CiTrigDeassert - de-assert the trigger.

Returns

Comments The BitFlow boards have both software and hardware triggers. The hardware triggers
are driven by external signals and are enabled by calling the function CiConExTrig-
Connect. The software triggers are always enabled. In order for a software trigger to
actually cause anything to happen, the board must be in a triggering mode. See the
function CiConVTrigModeSet.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

CiConSwTrig BitFlow SDK

SDK-18-34 BitFlow, Inc. Version G.8

The software trigger does not normally need to be deasserted. Normally, you need
only assert the software trigger to cause a frame to be acquired. However, in the Start/
Stop modes, the acquisition is initiated by the trigger being asserted and terminated
when the trigger is deasserted.

Note: The software triggers are not affected by the state of the trigger polarity settings.

Ci Mid-Level Control Functions CiConSwTrigStat

Version G.8 BitFlow, Inc. SDK-18-35

18.17 CiConSwTrigStat

Prototype BFRC CiConSwTrigStat(Bd Board, BFU32 CiTrig, PBFU32 Status)

Description Returns the status of the software trigger.

Parameters Board

Handle to board.

CiTrig

The trigger to inquire about, can be one of the following:

CiTrigA - inquire about trigger A.
CiTrigB - inquire about trigger B.

Status

The status of the trigger can be one of the following:

CiTrigHigh - the software trigger was high.
CiTrigLow - the software trigger was low.

Returns

Comments This function returns the status of the software trigger at the moment that the function
is called

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_
PARAMETER

The R64 only uses CiTrigA for CiTrig.

R2_BAD_CON_PARAM Invalid CiTrig was passed to the function.

R64_BAD_CON_PARAM Invalid CiTrig was passed to the function.

GN2_BAD_CON_PARAM Invalid CiTrig was passed to the function.

CiConExTrigConnect BitFlow SDK

SDK-18-36 BitFlow, Inc. Version G.8

18.18 CiConExTrigConnect

Prototype BFRC CiConExTrigConnect(Bd Board, BFU32 CiTrig, BFU32 Mode)

Description Connects or disconnect the external hardware trigger to the acquisition circuitry.

Parameters Board

Handle to board.

CiTrig

Trigger to change:

CiTrigA – TRIGGERA.
CiTrigB – TRIGGERB.

Mode

Change to make:

CiExTrigConnect - connect the trigger.
CiExTrigDisconnect - disconnect the trigger.

Returns

Comments This function connects the external hardware trigger to the acquisition circuitry. This
function lets you turn on or off the effect of external triggers without altering another
other settings on the board, as well as whatever machinery is driving the trigger sig-
nal.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

R2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

R64_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

GN2_BAD_CON_PARAM Either one of the parameters is not valid or the
particular combination or parameters is not pos-
sible.

Ci Mid-Level Control Functions CiConExTrigStatus

Version G.8 BitFlow, Inc. SDK-18-37

18.19 CiConExTrigStatus

Prototype BFRC CiConExTrigStatus(Bd Board, BFU32 CiTrig, PBFU32 Mode)

Description Returns the status of the hardware trigger to the acquisition circuitry.

Parameters Board

Handle to board.

CiTrig

Trigger to inquire:

CiTrigA – TRIGGERA.
CiTrigB – TRIGGERB.

Mode

Returns the status of connection:

CiExTrigConnect - connect the trigger.
CiExTrigDisconnect - disconnect the trigger.

Returns

Comments This function returns the status of the connection between the external hardware trig-
ger and the acquisition circuitry.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function is
not correct for this board type.

CiConHWTrigStat BitFlow SDK

SDK-18-38 BitFlow, Inc. Version G.8

18.20 CiConHWTrigStat

Prototype BFRC CiConHWTrigStat(Bd Board, BFU32 CiTrig, PBFU32 Status)

Description Returns the status of the hardware trigger.

Parameters Board

Handle to board.

CiTrig

The trigger to inquire about, can be one of the following:

CiTrigA - inquire about trigger A.
CiTrigB - inquire about trigger B.

Status

The status of the trigger can be one of the following:

CiTrigHigh - the software trigger was high.
CiTrigLow - the software trigger was low.

Returns

Comments This function returns the status of the hardware trigger at the moment that the func-
tion is called

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_UNKNOWN_
PARAMETER

The R64 only uses CiTrigA for CiTrig.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

R2_BAD_CON_PARAM Invalid CiTrig was passed to the function.

R64_BAD_CON_PARAM Couldn’t determine the trigger type being used.

Ci Mid-Level Control Functions CiConDMACommand

Version G.8 BitFlow, Inc. SDK-18-39

18.21 CiConDMACommand

Prototype BFRC CiConDMACommand(Bd Board, BFU32 Command, BFU32 DMAChannel)

Description Issues a DMA command to the board.

Parameters Board

Handle to board.

Command

DMA command to issue:

CiConDMAGo - start the DMA engine.
CiConDMAAbort - immediately abort the current DMA operation.

DMAChannel

Note: This parameter is only used with the Raven. For all boards this parameter should
be set to zero.

Which DMA channel to send command to:

DMAChannel0 - Use DMA Channel 0.
DMAChannel1 - Use DMA Channel 1.

Returns

Comments This function provides low-level access to the DMA engines. Normally there is no
need to call this function. The DMA engines are controlled by the acquisition engines,
and can therefore be controlled by the acquisition commands (see CiAqCommand).
However, in certain circumstances, direct control of the DMA engine may be needed,
therefore this function is provided.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function
is not correct for this board type.

R2_BAD_CON_PARAM Unknown command.

R64_BAD_CON_PARAM Unknown command.

GN2_BAD_CON_PARAM Unknown command.

CiShutDown BitFlow SDK

SDK-18-40 BitFlow, Inc. Version G.8

18.22 CiShutDown

Prototype BFRC CiShutDown(Bd Board, BFU32 AqEngine)

Description Aborts all DMA activity and acquisition on the board.

Parameters Board

Handle to board.

AqEngine

Note: AqEngK is available on the Raven. For all boards this parameter should be set to
AqEngJ.

The acquisition engine to build the QTab for:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

Comments This functions aborts all activity on the board. DMA is aborted. Acquisition is aborted.
The FIFOs are reset. The board stops what it is currently doing and gets it ready for
more acquisition. Normally this function does not need to be called.

Because the Raven is the only board with two acquisition engines, the Raven is the
only board where the AqEngine parameter can equal AqEngK. For all other boards
ignore this parameter must equal AqEngJ.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_
PARAMETERS

One of the parameters passed to this function
is not correct for this board type.

R2_BAD_DMA0_STOP Time-out waiting for DMA engine 0 to abort.

R2_BAD_DMA1_STOP Time-out waiting for DMA engine 1 to abort.

R2_BAD_AQ_STOP Time-out waiting for acquisition to abort.

R2_BAD_FIFO_RESET Could not reset the FIFOs.

GN2_AQEND_TIMEOUT Acquisition did not end

Ci Mid-Level Control Functions CiConAqMode

Version G.8 BitFlow, Inc. SDK-18-41

18.23 CiConAqMode

Prototype BFRC CiConAqMode(Bd Board, BFU32 DestType)

Description For a given destination type, this function sets the board’s acquisition MUX registers,
based on the current camera type.

Parameters Board

Handle to board.

DestType

Type of acquisition to prepare for:

CiDMABitmap - the destination buffer to be used for display.
CiDMADataMem - the destination buffer needs to contain raw data.

Returns

Comments This function sets up the board’s front end acquisition paths for acquiring to a display
buffer or a raw data buffer. A display buffer is one that will be used for display on a
monitor, and is 8 bits deep. A raw data buffer is one that the data has the same bit
depth as the camera.

This function has no effect for 8-bit cameras.

This function is normally called automatically by CiAqSetup, and does not need to be
called explicitly by an application. An unpredictable result will occur if this function is
called while the board is acquiring.

Currently, this function works with the Road Runner/R3 and the R64 family.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

R2_BAD_CON_PARAM Unknown DestType parameter.

R64_BAD_CON_PARAM Unknown DestType parameter.

CiConFIFOReset BitFlow SDK

SDK-18-42 BitFlow, Inc. Version G.8

18.24 CiConFIFOReset

Prototype BFRC CiConFIFOReset(Bd Board)

Description Resets the FIFO and FIFO freeze register on the board.

Parameters Board

Handle to board.

Returns

Comments This function only works on the R2/R3 family.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

Ci Mid-Level Control Functions CiConCtabReset

Version G.8 BitFlow, Inc. SDK-18-43

18.25 CiConCtabReset

Prototype BFRC CiConCtabReset(Bd Board)

Description Resets the control tables on the board.

Parameters Board

Handle to board.

Returns

Comments This function sets the CTab counters, HCOUNT and VCOUNT to zero. This function
works on the R2/R3 and R64 families.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CiConGetFrameCount BitFlow SDK

SDK-18-44 BitFlow, Inc. Version G.8

18.26 CiConGetFrameCount

Prototype BFRC CiConGetFrameCount(Bd Board, PBFU32 FrameCount, BFU32 AqEngine)

Description Returns the 3-bit frame count from the board.

Parameters Board

Handle to board.

FrameCount

The board’s current frame count.

AqEngine

The acquisition engine to get the frame count for:

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

Comments On the R2/R3/Karbon/Neon the frame count is a 3 bit counter. On the Aon/Axion/
Cyton, the frame count is a 24 bit counter.

Because the Raven is the only board with two acquisition engines, the Raven is the
only board where the AqEngine parameter can equal AqEngK. For all other boards
ignore this parameter must equal AqEngJ.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_
PARAMETER

Unknown AqEngine parameter.

Ci Mid-Level Control Functions CiConIntModeSet

Version G.8 BitFlow, Inc. SDK-18-45

18.27 CiConIntModeSet

Prototype BFRC CiConIntModeSet(Bd Board, BFU32 Mode)

Description Sets the interrupt mode for the board.

Parameters Board

Handle to board.

Mode

Type of interrupt mode to set the board for:

BFIntModeDefault - Interrupts will happen all the time.
BFIntModeEOFAq - EOF interrupts will only happen when acquisition be-

gins.

Returns

Comments The R2/R3 and Gen2 families always run in the BFIntModeDefault mode where the
interrupts are happening all the time. Only the R64 has the ability to be set in the
BFIntModeEOFAq mode.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

This board is not supported by this function.

CiConIntModeGet BitFlow SDK

SDK-18-46 BitFlow, Inc. Version G.8

18.28 CiConIntModeGet

Prototype BFRC CiConIntModeGet(Bd Board, PBFU32 Mode)

Description Gets the interrupt mode for the board.

Parameters Board

Handle to board.

Mode

Type of interrupt mode the board is set for:

BFIntModeDefault - Interrupts will happen all the time.
BFIntModeEOFAq - EOF interrupts will only happen when acquisition be-

gins.

Returns

Comments

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

Ci Mid-Level Control Functions CiConExposureControlSet

Version G.8 BitFlow, Inc. SDK-18-47

18.29 CiConExposureControlSet

Prototype BFRC CiConExposureControlSet(Bd Board, BFDOUBLE ExposurePeriod, BFDOU-
BLE LineFramePeriod, BFU32 TriggerMode, BFBOOL AssertedHigh, BFU32 Out-
putSignal)

Description Programs the board’s timing generator, used to create waveforms to control the line/
frame rate and exposure time of cameras.

Parameters Board

Handle to board.

ExposurePeriod

The desired exposure period in milliseconds

Note: This parameter is floating point and you can pass in non-whole number values
(e.g. 10.523)

LineFramePeriod

The desire line/frame rate period in milliseconds.

Note: This parameter is floating point and you can pass in non-whole number values
(e.g. 10.523)

TriggerMode

The triggering mode for the timing generator. Must be one of the following:

BFNTGModeFreeRun - Timing generator is free running.
BFNTGModeOneShotTrigger - Timing generator is in one-shot mode, trig-

gered by the board’s trigger input.
BFNTGModeOneShotEncoder - Timing generator is in one-shot mode,

triggered by the board’s encoder input.

AssertedHigh

The level of the timing generator’s output waveform. Must be:

TRUE - Waveform is asserted high.
FALSE - Waveform is asserted low.

OutputSignal

The outputs that the waveform will be output on. Can be one or more of the following
ORed together (signal will be output on all pins selected by this parameter):

For the Karbon/Neon/Alta:

CiConExposureControlSet BitFlow SDK

SDK-18-48 BitFlow, Inc. Version G.8

BFNTGOutputCC1 - Output on the CC1 signal on CL connector.
BFNTGOutputCC2 - Output on the CC2 signal on CL connector.
BFNTGOutputCC3 - Output on the CC3 signal on CL connector.
BFNTGOutputCC4 - Output on the CC4 signal on CL connector.
BFNTGOutputGP0 - Output on GPOUT0 on the I/O connector.
BFNTGOutputGP1 - Output on GPOUT1 on the I/O connector.
BFNTGOutputGP2 - Output on GPOUT2 on the I/O connector.
BFNTGOutputGP3 - Output on GPOUT3 on the I/O connector.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.

For the Aon/Axion/Cyton

BFNTGOutputCC1 - Output on the CC1 signal.
BFNTGOutputCC2 - Output on the CC2 signal.
BFNTGOutputCC3 - Output on the CC3 signal.
BFNTGOutputCC4 - Output on the CC4 signal.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.
BFNTGInputEncB - Output goes to Encoder B input.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The current board family does not support the
NTG.

R64_NTG_NOT_SUPPORTED The installed frame grabber does not support
the NTG or the current firmware does not cur-
rently support the NTG (contact BitFlow for
more information).

R64_NTG_EXP_OUT_OF_
RANGE

The requested values are out of range of the
timing generator

R64_NTG_EXP_GT_LF The requested exposure time is longer than
the requested line/frame period.

R64_NTG_UNKNOWN_MODE The requested mode triggering mode is not
known.

GN2_TS_EXP_OUT_OF_RANGE The requested values are out of range of the
timing generator

GN2_TS_EXP_GT_LF The requested exposure time is longer than
the requested line/frame period.

GN2_TS_UNKNOWN_MODE The requested mode triggering mode is not
known.

Ci Mid-Level Control Functions CiConExposureControlSet

Version G.8 BitFlow, Inc. SDK-18-49

Comments This function is used to program the New Timing Generator (NTG) available on the
Karbon/Neon/Alta and the Timing Sequencer on the Aon/Axion/Cyton. These timing
generator are used to control the line/frame rate and exposure time of attached cam-
eras.

The Exposure time is controlled by the ExposurePeriod parameter. This parameter
takes a floating point value in units of milliseconds. The line/frame rate is controlled
by the LineFrameRate parameter. This parameter is also floating point and the units
are in milliseconds. Note that although this parameter controls the line/frame rate, it is
not in units of Hertz, which it would be if this parameter was the line/frame frequency.
Instead this parameters controls the line/frame period, units of time. Refer to the
hardware manual of your frame grabber to see the range for these parameters.

The triggering of the timing generators are independent of the triggering configura-
tion of the rest of the frame grabber. They are fully independent of all other compo-
nents of the frame grabber, and runs completely on its own timing. These timing
generator can be triggered either by the currently selected trigger input or the cur-
rently selected encoder input.

The output waveform can be routed to one or more outputs. The parameter Out-
putSignal controls which outputs get the waveform. This parameter can take one or
more of the defined outputs ORed together. The waveform will appear on all outputs
simultaneously selected by this parameter.

The current status of the timing generator can be retrieved using the CiConExposure-
ControlGet function.

Please refer to the hardware manual of your board for more detailed information on
how this timing generator works.

GN2_TS_PROG_ERROR The Timing Sequencer could not be pro-
grammed for the given parameters

CiConExposureControlGet BitFlow SDK

SDK-18-50 BitFlow, Inc. Version G.8

18.30 CiConExposureControlGet

Prototype BFRC CiConExposureControlSet(Bd Board, PBFDOUBLE pExposurePeriod, PBF-
DOUBLE pLineFramePeriod, PBFU32 pTriggerMode, PBFBOOL pAssertedHigh,
PBFU32 pOutputSignal)

Description Retrieve the current parameters of the timing generator.

Parameters Board

Handle to board.

pExposurePeriod

Pointer to a double, returns the current exposure period in milliseconds

Note: This parameter is floating point and can be a in non-whole number values (e.g.
10.523)

pLineFramePeriod

Pointer to a double, returns the current line/frame rate period in milliseconds.

Note: This parameter is floating point and can be in non-whole number values (e.g.
10.523)

pTriggerMode

Pointer to a BFU32, returns the current triggering mode for the timing generator. Will
be one of the following:

BFNTGModeFreeRun - Timing generator is free running.
BFNTGModeOneShotTrigger - Timing generator is in one-shot mode, trig-

gered by the board’s trigger input.
BFNTGModeOneShotEncoder - Timing generator is in one-shot mode,

triggered by the board’s encoder input.

pAssertedHigh

Pointer to a BFU32, returns the current the current level of the timing generator’s out-
put waveform. Will be:

TRUE - Waveform is asserted high.
FALSE - Waveform is asserted low.

pOutputSignal

Pointer to a BFU32, returns the current outputs that the waveform is being output on.
Will be one or more of the following ORed together:

For the Karbon-CL/Neon/Alta:

Ci Mid-Level Control Functions CiConExposureControlGet

Version G.8 BitFlow, Inc. SDK-18-51

CiNTGOuputCC1 - Output on the CC1 signal on CL connector.
CiNTGOuputCC2 - Output on the CC2 signal on CL connector.
CiNTGOuputCC3 - Output on the CC3 signal on CL connector.
CiNTGOuputCC4 - Output on the CC4 signal on CL connector.
CiNTGOutputGP0 - Output on GPOUT0 on the I/O connector.
CiNTGOutputGP1 - Output on GPOUT1 on the I/O connector.
CiNTGOutputGP2 - Output on GPOUT2 on the I/O connector.
CiNTGOutputGP3 - Output on GPOUT3 on the I/O connector.
CiNTGInputTrig - Output goes to Trigger input.
CiNTGInputEncA - Output goes to Encoder A input.

For the Aon/Axion/Cyton:

CiNTGOuputCC1 - Output on the CC1.
CiNTGOuputCC2 - Output on the CC2.
CiNTGOuputCC3 - Output on the CC3.
CiNTGOuputCC4 - Output on the CC4.
CiNTGInputTrig - Output goes to Trigger input.
CiNTGInputEncA - Output goes to Encoder A input.
CiNTGInputEncB - Output goes to Encoder B input.

Returns

Comments This function is retrieves the current status of the New Timing Generator (NTG) on the
Karbon/Neon/Alta or the Timing Sequencer (TS) on the Aon/Axion/Cyton. The timing
generator is used to control the line/frame rate and exposure time of attached cam-
eras.

The timing generator can be programmed using the CiConExposureControlSet func-
tion.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The current board family does not support the
NTG.

R64_NTG_NOT_SUPPORTED The installed frame grabber does not support
the NTG or the current firmware does not cur-
rently support the NTG (contact BitFlow for
more information).

CiEncoderDividerSet BitFlow SDK

SDK-18-52 BitFlow, Inc. Version G.8

18.31 CiEncoderDividerSet

Prototype BFRC CiEncoderDividerSet(Bd Board,BFDOUBLE ScaleFactor, BFBOOL ForceDC,
BFBOOL OpenLoop, BFU32 ClockSelect);

Description Programs the encoder divider circuit. This circuit is used to modify the incoming
encoder frequency so that the camera can be run at a different line rate.

Parameters Board

Handle to board.

ScaleFactor

The factor to scale incoming encoder frequency. The incoming encoder frequency is
multiplied by this factor to derive the internal encoder frequency. This is a floating
point number. For example, if this parameter was 2.5 and the incoming encoder fre-
quency was 1000 Hz, the resulting internal encoder frequency would be 2500 Hz.
Range is from 0.00098 to 64.0.

ForceDC

When set to TRUE, the internal encoder frequency is forced to zero when the incom-
ing frequence falls below a certain low level.

OpenLoop

When set to TRUE, the internal encoder runs exactly at the given frequency based on
the ScaleFactor, the internal and the external encoder have no phase relationship.
When set to FALSE, the internal encoder will be exactly in phase with the external
encoder. This causes a small FM component to the internal encoder, but the timing
will be exact.

ClockSelect

Reserved for future functionality. Must be set to 0.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_BOARDPTR An invalid board handle was passed to the
function.

R64_ENCDIV_NOT_SUPPORTED The board does not support the encoder
divider function.

R64_ENCDIV_OUT_OF_RANGE The ScaleFactor parameter is out of range.

R64_ENCDIV_UNKNOWN_CLK The parameter ClockSelect is a value tha is
not supported.

GN2_ENCDIV_OUT_OF_RANGE The ScaleFactor parameter is out of range.

Ci Mid-Level Control Functions CiEncoderDividerSet

Version G.8 BitFlow, Inc. SDK-18-53

Comments This function is used to programmatically control the encoder divider circuit. This cir-
cuit is used to modify the incoming encoder frequency. This frequency is multiplied
by the value in the parameter ScaleFactor to create the internal encoder frequency.
The internal encoder frequency is used to drive the horizontal timing of the board as
well as the camera’s line rate (assuming a line scan camera is being used).

For more details on how the encoder divider circuit works, see the hardware refer-
ence manual for board that you are using.

CiEncoderDividerGet BitFlow SDK

SDK-18-54 BitFlow, Inc. Version G.8

18.32 CiEncoderDividerGet

Prototype BFRC CiEncoderDividerGet(Bd Board, PBFDOUBLE pScaleFactor, PBFBOOL
pForceDC, PBFBOOL pOpenLoop, PBFU32 pClockSelect);

Description Gets the encoder divider circuit’s parameters.

Parameters Board

Handle to board.

pScaleFactor

Returns a pointer to the the current factor used to scale the incoming encoder fre-
quency. The incoming encoder frequency is multiplied by this factor to derive the
internal encoder frequency. This is a floating point number. For example, if this
parameter was 2.5 and the incoming encoder frequency was 1000 Hz, the resulting
internal encoder frequency would be 2500 Hz. Range is from 0.00098 to 64.0.

pForceDC

Returns a pointer to a boolean. When set to TRUE, the internal encoder frequency is
forced to zero when the incoming frequence falls below a certain low level.

pOpenLoop

Returns a pointer to a boolean. When set to TRUE, the internal encoder runs exactly at
the given frequency based on the ScaleFactor, the internal and the external encoder
have no phase relationship. When set to FALSE, the internal encoder will be exactly
inphase with the external encoder. This causes a small FM component to the internal
encoder, but the timing will be exact.

pClockSelect

Reserved for future functionality. Must be set to 0.

Returns

Comments This function is used to retrieve the parameters of the encoder divider circuit. For
more information see CiEncoderDividerSet.

For more details on how the encoder divider circuit works, see the hardware refer-
ence manual for board that you are using.

CI_OK If successful.

CISYS_ERROR_BAD_BOARDPTR An invalid board handle was passed to the
function.

R64_ENCDIV_NOT_SUPPORTED The board does not support the encoder
divider function.

Ci Mid-Level Control Functions CiConNumFramesSet

Version G.8 BitFlow, Inc. SDK-18-55

18.33 CiConNumFramesSet

Prototype BFRC CiConNumFramesSet(Bd Board, BFU32 NumFrames)

Description Sets the number of frames to acquire for the next acquisition operation. Currently
only supported on Gen2 board.

Parameters Board

Handle to board.

NumFrames

The number of frames that should be acquired when the next acquisition command is
issued. This can be any of the following

1 - One frame will be acquired, this is equivalent to a snap operation.
2 to 0xffffff - The board will grab this number of frames and then freeze

automatically.
INFINITE (0xffffffff) - The board will acquire continuously until a freeze or

abort command is issued.

Returns

Comments This function is used to control how many frames are acquired. This function is only
needed when programming the board’s acquisition engine directly. This is not
needed when using higher level APIs (such as the Bi functions).

Note: This function currently only works on Gen2 boards.

CI_OK If successful.

GN2_BAD_CON_PARAM The value of NumFrames is not supported.

CiConIsCameraReady BitFlow SDK

SDK-18-56 BitFlow, Inc. Version G.8

18.34 CiConIsCameraReady

Prototype BFRC CiConIsCameraReady(Bd Board, PBFBOOL pReady)

Description Returns true if a camera is connected and is power up and running.

Parameters Board

Handle to board.

pReady

Parameter is set to true if camera is ready, false if the camera is not connected or not
ready.

Returns

Comments This function can be use to detect of there is a camera connected to the board and it
is powered up and providing some kind of clock.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

Ci Mid-Level Control Functions CiConCamLineWidthSet

Version G.8 BitFlow, Inc. SDK-18-57

18.35 CiConCamLineWidthSet

Prototype BFRC CiConCamLineWidthSet(Bd Board, BFU32 CamLineWidth)

Description Overrides the pixels per line parameter with a user value.

Parameters Board

Handle to board.

CamLineWidth

New value to set the acquisition line width (in units of pixels)/

Returns

Comments Some cameras require the Pixel Router to be programmed different that the Acquisi-
tion Engine. For example, 10-tap cameras output must be on boundaries of 10 pixels
while the DMA engine requires boundaries of 16 bytes. Normally is taken care of via
the use of the parameter cam_line_width BFML file. However, in situations where the
ROi is being manipulated dynamically from software, this function can be used to
update the actual camera line width (in pixels), while the ROI functions can be used to
update the actual acquisition image width.

Note: This function is only needed on Gen 2 Camera Link models.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

This board is not supported by this function.

CiConCamLineWidthSet BitFlow SDK

SDK-18-58 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-19-1

Ci Quad Table Functions

Chapter 19

19.1 Introduction

For almost all BitFlow applications there will be no need to call any of the functions in this
chapter. These are considered mid-level functions and are generally only called indirectly
by other, high level, functions. These functions are listed here in case some specialized
programming is required.

Quad Tables (or QTABS) are simple scatter gather DMA tables. A scatter gather DMA
table is a list of instructions that tell the board how to DMA images to host memory. The
name quad comes from the fact that each DMA instruction consists of four, 32-bit words:
DMA source, DMA destination, DMA size, and a pointer to the next DMA instruction.

There are two types of QTABs: relative and physical. These differ only by the kind of mem-
ory the DMA destination describes. Relative QTABs describe relative or virtual memory
address, which is typically all that your application sees.

Physical QTABs describe actual physical locations of memory. A relative QTab is created
based on the current camera and the memory pointer that is handed to the create func-
tion. The physical QTab is built from this at the kernel level by locking down the virtual
memory and calculating the physical addresses of this memory.

CiRelQTabCreate BitFlow SDK

SDK-19-2 BitFlow, Inc. Version G.8

19.2 CiRelQTabCreate

Prototype BFRC CiRelQTabCreate(Bd Board, PBFCNF pCam, PBFVOID pDest, BFU32 Buffer-
Size, BFS32 Stride, PQTABHEAD pRelQTabHead, BFU32 DestType, BFU32 Lut-
Bank, BFU32 LutType, BFU32 Options, BFU32 AqEngine)

Description Builds a relative QTab, used for acquisition from a given camera type to a host mem-
ory buffer. The relative QTab can then be converted to a physical QTab, which can be
written to the board.

Parameters Board

Handle to board.

pCam

Camera object of the type to build the QTab for.

pDest

A void pointer to the destination buffer.

BufferSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in pixels, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

pRelQTabHead

Pointer to an allocated QTABHEAD structure.

DestType

Note: This parameter is ignored for the Raven.

CiDMADataMem – host memory.
CiDMABitmap – Display memory.

LutBank

The LUT bank to pass the image through:

Note: This parameter is ignored for the R64.

Ci Quad Table Functions CiRelQTabCreate

Version G.8 BitFlow, Inc. SDK-19-3

CiLutBank0 - LUT bank 0
CiLutBank1 - LUT bank 1
CiLutBank2 - LUT bank 2
CiLutBank3 - LUT bank 3
CiLutBypass - bypass LUTs

LutType

The mode of the LUT to use. The Raven will always use 8 bit LUTs, for the RoadRunner
the following LUT types are available:

Note: This parameter is ignored for the R64.

CiLut8Bit - LUTs are programmed as 8 bits.
CiLut12Bit - LUTs are programmed as 12 bits.
CiLut16Bit - LUTs are programmed as 16 bits. (only on boards with 16-bit

LUTs)

Options

Extra option for the last quad. Can be one or more of:

CiDMAOptInt - set interrupt bit in last quad.
CiDMAOptEOC - set EOC bit in last quad.

AqEngine

The acquisition engine to build the QTab for:

Note: This parameter is ignored for the Road Runner/R3 and the R64.

AqEngJ - set up the J engine.
AqEngK - set up the K engine.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_
PARAMETER

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R2_BAD_CNF Error extracting information from the camera
object.

CiRelQTabCreate BitFlow SDK

SDK-19-4 BitFlow, Inc. Version G.8

Comments This function builds a relative QTab for acquisition of a given camera type into a host
memory buffer. The QTab is a table of scatter-gather DMA instructions that the board
uses to continuously (and without host intervention) DMA camera data to the host
memory. The relative QTab is the version of this table that is built with virtual
addresses. These virtual addresses point to the destination buffer as addressed in the
application’s address space. The relative QTab must be passed to CiPhysQTabCreate
to build a physical QTab. The physical QTab is the same as the relative QTab except

R2_BAD_MODEL The camera configuration contains a QTab
model or format that is not understood by this
version of the SDK. Or, the camera configura-
tion is such that the relative QTab cannot be
built.

R2_BAD_CON_PARAM The LutBank, LutType or AqEngine parame-
ter is incorrect.

R2_BAD_ROI There is a problem with the destination mem-
ory buffer size or location.

RV_BAD_CNF Error extracting information from the camera
object.

RV_BAD_MODEL The camera configuration contains a QTab
model or format that is not understood by this
version of the SDK. Or, the camera configura-
tion is such that the relative QTab cannot be
built.

RV_BAD_CON_PARAM The LutBank or AqEngine parameter is incor-
rect.

RV_BAD_ALLOC Cannot allocate enough memory to build rela-
tive QTab.

R64_BAD_CNF Error extracting information from the camera
object.

R64_BAD_MODEL The camera configuration contains a QTab
model or format that is not understood by this
version of the SDK. Or, the camera configura-
tion is such that the relative QTab cannot be
built.

R64_BAD_CON_PARAM The LutBank, LutType or AqEngine parame-
ter is incorrect.

BF_BAD_ALLOC Cannot allocate enough memory to build rela-
tive QTab.

BF_BAD_ROI There is a problem with the destination mem-
ory buffer size or location.

BF_BAD_CON_PARAM The values to one of the parameters is incor-
rect.

Ci Quad Table Functions CiRelQTabCreate

Version G.8 BitFlow, Inc. SDK-19-5

that it contains physical addresses that can be used by the board as actual DMA desti-
nations. The physical QTab is stored in the kernel and can be quickly copied to the
board.

This is a mid-level function and should not be called except for custom programming.
The high-level function CiAqSetup will call this function for you.

Depending on the camera, this function may take a moderate amount of time to cal-
culate the relative QTab. This function should only be called once, for a given camera
and destination. The relative QTab can be used repeatedly to acquire from the same
camera type into the same memory buffer.

This function allocates memory to hold the relative QTab in the users address space.
Call CiRelQTabFree to release this and other resources allocated in this function.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter. When using a Raven, the QTab build will only work with the given acquisi-
tion engine. You cannot build a QTab for one engine and use it with another.

CiRelQTabFree BitFlow SDK

SDK-19-6 BitFlow, Inc. Version G.8

19.3 CiRelQTabFree

Prototype BFRC CiRelQTabFree(Bd Board, PQTABHEAD pRelQTabHead)

Description Frees resources allocated in CiRelQTabCreate.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to QTABHEAD structure previously passed to CiRelQtabCreate.

Returns

Comments This function releases the memory used to hold the relative QTab and any other
resources allocated in CiRelQTabCreate.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

Ci Quad Table Functions CiPhysQTabCreate

Version G.8 BitFlow, Inc. SDK-19-7

19.4 CiPhysQTabCreate

Prototype BFRC CiPhysQTabCreate(Bd Board, PQTABHEAD pRelQTabHead, BFU32
AqEngine)

Description Builds a physical QTab that backs a relative QTab that describes a destination buffer in
host memory for a given camera type.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure that has been filled out in CiRelQTabCreate.

AqEngine

The acquisition engine to build the QTab for:

Note: The Raven is the only board that supports two acquisition engines. For the Road
Runner/R3 and the R64, this parameter must be set to AqEngJ.

AqEngJ – set up the J engine.
AqEngK – set up the K engine.

Returns

Comments This function takes a relative QTab created in CiRelQTabCreate and builds a physical
QTab (storage is allocated in this function). The physical QTab contains actual physical
addresses of the destination buffer in memory. The physical addresses can be used
by the board as DMA destinations. This function also locks the destination buffer into
memory (prevents the operating system from swapping the memory to disk). The
memory must be locked in order for the DMA request to be satisfied.

When this function returns, the QTABHEAD structure contains the handle to the newly
created physical QTab.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

R2_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

RV_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

CiPhysQTabCreate BitFlow SDK

SDK-19-8 BitFlow, Inc. Version G.8

The resulting physical QTab is stored in the driver. It can be copied to the board using
CiPhysQTabWrite. Multiple physical QTABs can be built and live in the driver at the
same time, each with it’s own QTABHEAD structure. The physical QTab can be
released with a call to CiPhysQTabFree.

This is a mid-level function and should not be called except for custom programming.
The high-level function CiAqSetup will call this function for you.

Because the Raven is the only board with two DMA engines, the Raven is the only
board where the AqEngine parameter is relevant. All other boards ignore this
parameter.

Ci Quad Table Functions CiPhysQTabWrite

Version G.8 BitFlow, Inc. SDK-19-9

19.5 CiPhysQTabWrite

Prototype BFRC CiPhysQTabWrite(Bd Board, PQTABHEAD pRelQTabHead, BFU32 Offset)

Description Writes a physical QTab to a board.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure, containing a valid physical QTab.

Offset

The entry number to start writing the physical QTab. This can be any value between 0
and 32768. However, this value is usually the location of the first quad in a bank,
depending on the QTab bank mode, this can change. The following defines are avail-
able for your use:

In two bank mode:

0 – start of first bank.
CIQTABBANKSTART1_2 – start of second bank.

In four bank mode:

0 – start of first bank
CIQTABBANKSTART1_4 – start of second bank.
CiQTABBANKSTART2_4 – start of third bank.
CiQTABBANKSTART3_4 – start of fourth bank.

Returns

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The R64 dose not support this function.

CISYS_ERROR_UNKNOWN_

PARAMETERS

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R2_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

RV_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

CiPhysQTabWrite BitFlow SDK

SDK-19-10 BitFlow, Inc. Version G.8

Comments This function is only needed in the case that your application is using board QTABs.
As of SDK 4.00 there is almost no reason to use board QTABs. Thus there is almost no
reason to use this function.

This function takes an already created physical QTab and copies it into the board’s
DMA quad tables. These tables are used to tell the board’s DMA engine where, and
how many pixels to DMA to host.

This is a mid-level function and should not be called except for custom programming.
The high-level function CiAqSetup will call this function for you.

Ci Quad Table Functions CiPhysQTabFree

Version G.8 BitFlow, Inc. SDK-19-11

19.6 CiPhysQTabFree

Prototype BFRC CiPhysQTabFree(Bd Board, PQTABHEAD pRelQTabHead)

Description Frees the memory used to hold the physical QTab in the driver memory.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure that contains a valid physical QTab.

Returns

Comments This function frees the driver level resources used to hold a physical QTab.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_UNKNOWN_

PARAMETERS

The parameter to inquire about is not recog-
nized. Check that the parameter is valid for the
board being used.

R2_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

RV_BAD_IOCTL Error creating physical QTab. Check error stack
for other errors.

CiPhysQTabEngage BitFlow SDK

SDK-19-12 BitFlow, Inc. Version G.8

19.7 CiPhysQTabEngage

Prototype BFRC CiPhysQTabEngage (Bd Board, PQTABHEAD pRelQTabHead)

Description This sets the board up to use the given QTab for the next DMA operation. This func-
tion should be called for both host and board QTABs.

Parameters Board

Handle to board.

pRelQTabHead

A pointer to a Relative QTab head structure. This should be the QTab for the host
memory buffer that will acquired into when the next acquisition command occurs.

Returns

Comments This function engages the QTab pRelQTabHead so that the board will use this QTab
for subsequent DMA operations. This is a mid level function which is not need it the
high level functions (e.g. CiAqSetup) are being used to set up DMA.

This function is used when building QTABs using the CiRelQTabCreate functions. The
normal order of function calls is as follows

CiRelQTabCreate
CiPhysQTabCreate
CiPhysQtabWrite
CiPhysQTabEngage
CiConDMACommand

This function should be called for both board and host QTABs. The function will set
the QTab up appropriately for whichever type of QTab is being used. This function
must be called before DMA is started.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has
already been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board

BF_QUAD_GOING Attempt to engage QTab when board is
DMAing.

BF_BAD_CHAIN Attempting to select a frame number when
there is only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

Ci Quad Table Functions CiPhysQTabChainLink

Version G.8 BitFlow, Inc. SDK-19-13

19.8 CiPhysQTabChainLink

Prototype BFRC CiPhysQTabChainLink(Bd Board, PPQTABHEAD ChainArray, BFU32 NumIn-
Chain)

Description This function chains together a number of QTABs for sequential acquisition in host
QTab mode.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which describe an set of buffers to be acquired into. The
buffers will be filled in the order that their QTABs appear in this array.

NumInChain

The total number of QTab headers in the QTab chain array.

Returns

Comments This function effectively sets the board up for continuous acquisition into a sequence
of host buffers. Each buffer in is DMAed into in turn, when the last buffer in the chain is
filled, the board will DMA the next frame into the first buffer. In other words the chain
describes a circular buffer.

The parameter ChainArray is an array of pointer to QTab headers. The QTab must
already be created by calling CiRelQTabCreate and CiPhysQTabCreate. After this
function return successfully, the chain must be engaged by calling CiPhysQTAB-
ChainEngage function. The normal calling sequence for this function would be as fol-
lows:

loop for all buffers
CiRelQTabCreate

loop for all buffers
CiPhysQTabCreate

CiPhysQTabChainLink

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

BF_NULL_POINTER ChainArray is NULL.

BF_NOT_CHAIN NumInChain is not valid.

BF_BAD_CHAIN Error walking ChainArray.

CiPhysQTabChainLink BitFlow SDK

SDK-19-14 BitFlow, Inc. Version G.8

CiPhysQTabChainEngage
CiDMACommand
CiConAqCommand

In the scenario above, no data will move until an acquisition command is sent to the
board and the camera sends a frame to the board. Once data is flowing, the board
will fill each buffer as the data comes in. Once the last buffer in the chain is filled, the
board will continue starting with the first buffer. No host interaction is required for this
process to work. The board will send a signal every frame (assuming CiRelQTabCre-
ate was called with the CiDMAOptInt parameter) to tell your application when a frame
is complete (use CiSignalWait).

Note: This function will only work for boards that support QTABs on the host, and will
only work when board is in QTABs on the host mode. Only older Road Runners with
the PLX 9060 chip have this limitation. All new Road Runners, R3s, Ravens and R64s
support host QTABs.

Ci Quad Table Functions CiPhysQTabChainBreak

Version G.8 BitFlow, Inc. SDK-19-15

19.9 CiPhysQTabChainBreak

Prototype BFRC CiPhysQTabChainBreak (Bd Board, PPQTABHEAD ChainArray)

Description Release QTABs from a chain so that they can be reused to build a subsequent chain.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which has been already passed to CiPhysQTabChainCre-
ate.

Returns

Comments This function is used to release the QTABs that are used by a chain. When a chain is
built the QTABs that make it up are modified for use in the chain. If these QTABs need
to be used again, the chain must first be broken with this function. After this function is
called, the individual QTABs can be use to build another chain, presumable in a dif-
ferent order.

There is no need to call this function during cleanup if the individual QTABs are not
going to be used again.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

BF_BAD_CHAIN Error walking ChainArray.

CiPhysQTabChainEngage BitFlow SDK

SDK-19-16 BitFlow, Inc. Version G.8

19.10 CiPhysQTabChainEngage

Prototype BFRC CiPhysQTabChainEngage(Bd Board, PPQTABHEAD ChainArray, BFU32
NumInChain)

Description Takes a successfully created chain and sets the board up to use it.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to CiPhysQTabChainCreate.

NumInChain

The buffer number of the first frame in the chain to be acquired into.

Returns

Comments After a chain is created using CiPhysQTabChainCreate, the chain must be engaged
using this function in order for the board to use it. Creating a chain is not a real time
operation and should be done off line. If more than one chain is required, they should
all be created first, then this function can be used to select which chain will be
acquired into first.

See CiPhysQTabChainCreate for more information.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has
already been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board

BF_QUAD_GOING Attempt to engage QTab when board is
DMAing.

BF_BAD_CHAIN Attempting to select a frame number when
there is only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

Ci Quad Table Functions CiPhysQTabChainProgress

Version G.8 BitFlow, Inc. SDK-19-17

19.11 CiPhysQTabChainProgress

Prototype BFRC CiPhysQTabChainProgress(Bd Board, PPQTABHEAD ChainArray, PBFU32
pFrameNum, PBFU32 pLineNum)

Description Returns the line number and frame number of current image being DMAed.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to CiPhysQTabChainCreate.

pFrameNum

Pointer to the number of the current frame being DMAed into.

pLineNum

Pointer to the number of the current line being DMAed.

Returns

Comments This function is used to check the progress of acquisition while the board is acquiring
using a chain. The function will return both the line number and the frame number.
This function is fairly computationally intensive and should not be called in a tight
loop to monitor progress. This function is best used intermittently to check progress,
for example, it can be interleaved with processing.

The best way to overlap acquisition and processing is to create a signal that waits for
the end of frame signal (CiIntTypeEOD). Once the signal is asserted, the CPU can
freely process the entire frame.

If you need to monitor the boards progress using a tight loop, read the VCOUNT reg-
ister. Reading a register uses much less CPU time. Even in this case, you should put a
sleep in your loop to not overwhelm the board with register reads (which take prece-
dence over DMAing). Again is it better to interleave processing and checking
VCOUNT.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

BF_BAD_PTAB The chain is not valid.

CiChainSIPEnable BitFlow SDK

SDK-19-18 BitFlow, Inc. Version G.8

19.12 CiChainSIPEnable

Prototype BFRC CiChainSIPEnable(Bd Board, PPQTABHEAD ChainArray)

Description Enables start-stop interrupt processing (SIP).

Parameters Board

Handle to board.

pRelQTabHead

Structure holding information about QTab.

Returns

Comments This function enables start-stop interrupt processing (SIP). This processing is used to
reset the DMA engine in a kernel interrupt service routine.

When the board is in start-stop mode, the DMA is terminated before the frame is
completely acquired. This termination leaves the DMA engine in an unknown state.
The DMA engine must be reset and setup for the next host buffer before the next
frame starts. Ordinarily this reset is performed by the application at the user level.
However, in the case of a multi threaded application, the reset thread may not be able
to reset the DMA engine before the beginning of the next frame (because of CPU
load and thread priorities). To solve this problem the BitFlow SDK implements a DMA
engine reset in the kernel level interrupt service routine. This code has higher priority
than any user level threads. The latency and execution time of the SIP reset is mini-
mized thus reducing the required minimum time between frames. This function turns
on this functionality.

SIP only works (and is only required) when the board is in start-stop triggering mode
(variable size image acquisition) and when a host QTab chain has been created and
engaged. This function must be called before acquisition has started but after the
QTab chain is created. This function enable the SIP resetting of the DMA engine, you
must call CiChainSIPDisable to turn the SIP off. This SIP is based on the interrupt that
occurs when the trigger de-asserts (the actual interrupt type depends on the board
family being used).

The example application Flow demonstrates usage of this function.

Currently CiChainSIPEnable is not supported by the Raven.

CI_OK If successful.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Non-zero On error.

Ci Quad Table Functions CiChainSIPDisable

Version G.8 BitFlow, Inc. SDK-19-19

19.13 CiChainSIPDisable

Prototype BFRC CiChainSIPDisable(Bd BoardId, PPQTABHEAD ChainArray)

Description Disables Start-Stop Interrupt Processing mode.

Parameters Board

Board ID.

pRelQTabHead

Structure holding information about QTab.

Returns

Comments See CiChainSIPEnable for details

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the func-
tion.

Non-zero Function failed.

CiChainSIPDisable BitFlow SDK

SDK-19-20 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-20-1

Ci Control Tables

Chapter 20

20.1 Introduction

These functions allow an application to write directly to the control tables (CTAB). Nor-
mally the CTABs are initialized from a camera configuration file. However, because the
CTABs control things like frame rate and exposure time, an application may want to mod-
ify them on-the-fly.

CiCTabPeek BitFlow SDK

SDK-20-2 BitFlow, Inc. Version G.8

20.2 CiCTabPeek

Prototype BFU16 CiCTabPeek(Bd Board, BFU32 Index, BFU16 Mask)

Description Reads a single masked value from the Camera Control Table.

Parameters Board

Board ID.

Index

CTAB table offset.

For the Road Runner/R3:

0 - 0x2000 for horizontal CTABs
0 - 0x8000 for vertical CTABs

For the R64:

0 - 0x8000 for horizontal CTABs
0 - 0x20000 for vertical CTABs

Mask

CTAB bit extraction mask.

For the Road Runner/R3:

R2CTab
R2HCTab
R2VCTab
R2HCTabHEnd
R2HCTabHStart
R2HCTabClamp
R2HCTabField
R2HCTabHStrobe
R2HCTabHCon0
R2HCTabHCon1
R2HCTabHCon2
R2VCTabVEnd
R2VCTabVLoad
R2VCTabVStart
R2VCTabIRQ
R2VCTabVStrobe
R2VCTabVCon0
R2VCTabVCon1
R2VCTabVCon2

Ci Control Tables CiCTabPeek

Version G.8 BitFlow, Inc. SDK-20-3

For the R64:

R64CTab
R64HCTab
R64VCTab
R64HCTabHStart
R64HCTabHReset
R64HCTabENHLoad
R64HCTabReserved
R64HCTabGPH0
R64HCTabGPH1
R64HCTabGPH2
R64HCTabGPH3
R64VCTabVStart
R64VCTabVReset
R64VCTabENVLoad
R64VCTabIRQ
BFVCTabVStrobe
R64VCTabGPV0
R64VCTabGPV1
R64VCTabGPV2
R64VCTabGPV3

Returns

Comments See the hardware reference manuals for details on what each CTAB column does.

A single masked CTAB entry Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board
being used.

CiCTabPoke BitFlow SDK

SDK-20-4 BitFlow, Inc. Version G.8

20.3 CiCTabPoke

Prototype BFRC CiCTabPoke(Bd Board, BFU32 Index, BFU16 Mask, BFU16 Value)

Description Writes a single masked value to the Camera Control Table.

Parameters Board

Board ID.

Index

CTAB table offset.

Mask

CTAB bit extraction mask (see CiCtabPeek).

Value

CTAB value.

Returns

Comments

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board
being used.

R2_CTAB_POKE_BAD CTAB poke failed.

R64_CTAB_POKE_BAD CTAB poke failed.

Ci Control Tables CiCTabRead

Version G.8 BitFlow, Inc. SDK-20-5

20.4 CiCTabRead

Prototype BFRC CiCTabRead(Bd Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pDest)

Description Reads masked CTAB values from the Camera Control Table.

Parameters Board

Board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see CiCtabPeek).

pDest

Pointer to CTAB table storage (32 bits per entry).

Returns

Comments

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board being
used.

CISYS_ERROR_UNKNOWN_
PARAMETER

A illegal parameter was passed to the function.

R2_CTAB_READ_BAD CTAB read failed.

R64_CTAB_READ_BAD CTAB read failed.

CiCTabWrite BitFlow SDK

SDK-20-6 BitFlow, Inc. Version G.8

20.5 CiCTabWrite

Prototype BFRC CiCTabWrite(Bd Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pSource)

Description Writes masked CTAB values to the Camera Control Table.

Parameters Board

Board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see CiCtabPeek).

pSource

CTAB entries to write (32 bits per entry).

Returns

Comments

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board
being used.

CISYS_ERROR_UNKNOWN_
PARAMETER

A illegal parameter was passed to the function.

R2_CTAB_WRITE_BAD CTAB write failed.

R64_CTAB_WRITE_BAD CTAB write failed.

Ci Control Tables CiCTabFill

Version G.8 BitFlow, Inc. SDK-20-7

20.6 CiCTabFill

Prototype BFRC CiCTabFill(Bd Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask, BFU16
Value)

Description Writes a masked CTAB fill value to the Camera Control Table.

Parameters Board

Board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to write.

Mask

CTAB bit extraction mask (see CiCtabPeek).

Value

CTAB fill value to write.

Returns

Comments

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board
being used.

CISYS_ERROR_UNKNOWN_
PARAMETER

A illegal parameter was passed to the func-
tion.

R64_CTAB_FILL_BAD CTAB fill failed.

R2_CTAB_FILL_ERR CTAB fill failed.

CiCTabRamp BitFlow SDK

SDK-20-8 BitFlow, Inc. Version G.8

20.7 CiCTabRamp

Prototype BFRC CiCTabRamp(Bd Board, BFU32 StartIndex, BFU32 EndIndex, BFU32 StartVal,
BFU32 EndValue)

Description Writes a ramp function (i.e. 0,1,2,3,4...) to the Camera Control Table.

Parameters Board

Board ID.

StartIndex

CTab start table offset.

EndIndex

CTab end table offset.

StartVal

CTab start value.

EndValue

CTab end value.

Returns

Comments This function writes an integer ramp function, starting at the value StartVal and end-
ing at the value EndValue. The ramp function is distributed evenly between the CTAB
entries start at the index StartIndex and ending at EndIndex. If the request ramp
does no result in integer values at for every entry, the actual values are rounded.

CI_OK Function succeeded.

CISYS_ERROR_NOTSUP-
PORTED

The model dose not support this function.

CISYS_ERROR_BAD_
BOARDPTR

Unable to determine the model of board
being used.

BF_BAD_ALLOC Unable to allocate memory for the ramp.

R64_CTAB_RAMP_BAD Error writing ramp.

R2_CTAB_RAMP_BAD Error writing ramp.

Ci Control Tables CiCTabVSize

Version G.8 BitFlow, Inc. SDK-20-9

20.8 CiCTabVSize

Prototype BFU32 CiCTabVSize(Bd Board)

Description Returns the vertical CTab size.

Parameters Board

Board ID.

Returns Returns the vertical CTab size.

Comments

CiCTabHSize BitFlow SDK

SDK-20-10 BitFlow, Inc. Version G.8

20.9 CiCTabHSize

Prototype BFU32 CiCTabHSize(Bd Board)

Description Returns the horizontal CTab size.

Parameters Board

Board ID.

Returns Returns the horizontal CTab size.

Comments

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-21-1

Road Runner and R3 Introduction

Chapter 21

21.1 Overview

The Road Runner and the R3 are a high-performance, PCI-based frame grabber families.
They are targeted at digital cameras and general purpose digital data acquisition. Their
DMA engine transfers data directly into system memory. Their digital ports can accept
four 8-bit taps. On board circuitry will reformat the data “on the fly.” Both the Road Runner
and the R3 come in two major version: one supports the LVDS/RS422 differential cameras
and the other supports Camera Link cameras. Figure 21-1 shows the block diagram of the
R2422/LVDS version of the Road Runner.

Figure 21-1 Road Runner Block Diagram

Figure 21-2 shows the diagram for the Road Runner Camera Link.

32

32

32

32

32

32

32

32

1532

1532

T2

32

T0

T3

32

32

32

32

32

T1

T0

T1

T2

T3

T1

T3

*

*

8

8

8

8

T1_inverted

T3_inverted

T3*, T2, T1*, T0

VIDEO FIFO A

STACK

STACK

Differential
Receivers

2:1
Selector

2:1
Selector

VIDEO FIFO B

Camera
Controller

&
Timing

Generators

Camera
Controllers

PLX PC109x0

DMA Engine

Address
Generator

PCI Interface

DMA
Scatter Gather

Instructions

Local Bus
Controller

Local Bus

VIDEO FIFO C

VIDEO FIFO D

Addr

Data

Addr

Data

SRAM
H-CTAB

SYNC Bus

SRAM
H-CTAB

MUXA
10/12/14 32
 8/16/32 32

MUXB
10/12/14 32
 8/16/32 32

MUXC
10/12/14 32
 8/16/32 32

MUXD
10/12/14 32
 8/16/32 32

Channel
Selector

4:1

LUTs
2X16IN-16OUT

or
4x8in-8out

or
2x12in-16out

Overview BitFlow SDK

SDK-21-2 BitFlow, Inc. Version G.8

Figure 21-2 Road Runner Camera Link Block Diagram.

24/

32

8

32

/

Camera
Control Unit

&
Video Timing

Generator

CTABs PLX 9080

DMA Engine
& PCI

Interface
I/O Triggers Encoders

Camera Link
Interface

VIDEO[23..0]

Transmit

Receive
UART

Serial
Interface

Local Bus

PCI Bus

Camera
Controls

/

32

3224

32

FIFO A

FIFO B

MUXA

MUXB

F_SEL

2:1

LUTs

2X

16in-16out

/ / 32/

32//

/

Road Runner and R3 Introduction Where is the R3 or PMC API?

Version G.8 BitFlow, Inc. SDK-21-3

21.2 Where is the R3 or PMC API?

The API described in the book was originally written for the Road Runner family, thus
all the functions start with “R2”. When the R3 product was being developed, the goal
was to make a simple migration path from the Road Runner to the R3. The best way to
do this is for the new product to use the old API. Thus and Road Runner application
will run, unchanged on an R3 (assuming the application is built with a SDK release that
supports the R3). Thus the functions in this book apply to both versions of Road Run-
ner and the R3.

In the rare case where an application needs to know specifics of the board installed.
There is a function BFIsCl that will indicate which type of front end the board has (i.e.
LVDS/R422 or Camera Link). There is also a function BFIsR3 that will indicate where
the Road Runner or the R3 family is installed.

The PMC board is a R3-23 in a different form factor. All functions that are valid for the
R3 are valid for the PMC.

Where is the R3 or PMC API? BitFlow SDK

SDK-21-4 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-22-1

Road Runner/R3 System Open and
Initialization

Chapter 22

22.1 Introduction

The functions described in this chapter are quite simple; the idea is to find the board or
boards that you want to work with, then open and optionally initialize them. When you are
finished, close the system up, thus cleaning up all resources allocated in the open func-
tion.

A normal program would uses these functions, in this order:

R2SysBoardFindByXXXX
R2BrdOpen

// acquisition and processing

R2BrdClose

If you want to open two boards, the flow would be as follows:

R2SysBoardFindByXXXX // find board 0
R2BrdOpen // open board 0
R2SysBoardFindByXXXX // find board 1
R2BrdOpen // open board 1

// acquisition and processing

R2BrdClose // close board 0
R2BrdClose // close board 1

The board find functions are used to make sure that you are opening the correct board in
a multi-board system. If you have only one board, then the call is trivial.

Note: There is currently only one board find function, R2SysBoardFindByNum.

The handle return by the function R2BrdOpen is used in all subsequent function calls. If
you are using two or mode boards, open each board and store each handle in a separate
variable. Whenever you want to talk to board X, pass the handle for board X to the func-
tion.

There is no need to call R2BrdOpen more than once per process per board. Because this
function takes a fair amount of CPU time and allocated resources, we discourage users
from repeatedly calling R2BrdOpen and the R2BrdClose in a loop. We recommend open-
ing the board once, when the application starts, and closing it once when the application
exits. If you are using a program that has multiple threads, open the board once in the first

Introduction BitFlow SDK

SDK-22-2 BitFlow, Inc. Version G.8

main thread and then pass the board handle to every thread that is subsequently cre-
ated. You must call R2BrdClose for every board that is open with R2BrdOpen. You
should also call R2BrdClose in the same thread the R2BrdOpen was called in.

Road Runner/R3 System Open and Initialization R2SysBoardFindByNum

Version G.8 BitFlow, Inc. SDK-22-3

22.2 R2SysBoardFindByNum

Prototype R2RC R2SysBoardFindByNum(BFU32 Number, PR2ENTRY pEntry)

Description Finds a Road Runner/R3 on the PCI bus with a given number.

Parameters Number

The number of the board to find. Boards are numbered sequentially as they are found
when the system boots. A given board will be the same number every time the system
boots as long as the number of boards and the Road Runner/R3 is in the same PCI
slot.

pEntry

A pointer to an empty R2ENTRY structure, used to tell the R2BrdOpen function which
board to open.

Returns

Comments If you have only one board in your system set Number = 0 and only call this function
once. This function can be used to enumerate all of the boards in a system. It can be
called repeatedly, incrementing Number each time, until the function returns R2SYS_
ERROR_NOTFOUND.

There is no standard way to correlate the Number parameter of this function to the
PCI slot number. Every motherboard and BIOS manufacturer has a different scheme.
You can use the system configuration utility, SysReg, to determine the relationship
between slot number and board Number, by setting the board ID switches different
for each board in your system and walking through all the installed boards.

R2_OK The board was successfully found.

R2SYS_ERROR_NOT-
FOUND

There is no board with this number.

R2SYS_ERROR_REGISTRY An error occurred searching for the board informa-
tion in the registry.

R2SYS_ERROR_SIZE Internal error.

R2BrdOpen BitFlow SDK

SDK-22-4 BitFlow, Inc. Version G.8

22.3 R2BrdOpen

Prototype R2RC R2BrdOpen(PR2ENTRY pEntry, RdRn *pBoard, BFU32 Mode)

Description Opens a Road Runner/R3 for access. This function must return successfully before any
other Road Runner/R3 SDK functions are called (with the exception of R2SysBoard-
FindXXXX functions).

Parameters pEntry

A pointer to a filled out R2ENTRY structure. This structure describes which board is to
be opened. The structure is filled out by a call to one of the R2SysBoardFindXXXX
functions.

*pBoard

A pointer to a RdRn handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

R2SysInitialize - initialize the board.
R2SysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
R2SysNoIntThread - do not start interrupt IRP thread.
R2SysNoCameraOpen - do not open any configured cameras.
BFSysNoAlreadyOpenMess - suppress already open warning message.
BFSysNoOpenErrorMess - suppress all error popups in open function
BFSysSecondProcessOpen - special mode that allows the board to be

opened twice in the same process (includes of some of the above
modes).

Returns

R2_OK Function was successful.

R2_ALREADY_OPEN_PROC Another thread in the process has already
opened the board, this open not allowed.

R2_ALREADY_OPEN_EXEC_
YOU

Another process has opened the board in R2Sy-
sExclusive mode, this open is not allowed.

R2_ALREADY_OPEN_EXEC_
ME

You have attempted to open the board in R2Sy-
sExclusive but the board is already opened by
another process, this open not allowed.

Road Runner/R3 System Open and Initialization R2BrdOpen

Version G.8 BitFlow, Inc. SDK-22-5

Comments This function opens the board for all accesses. Call one of the R2SysBoardFindXXXX
functions first to find the board you wish to open. Then call this function to open to
board. The board must be opened before any other functions can be called. When
you are finished accessing the board you must call R2SysBrdClose, before exiting
your process. Failure to call R2SysBrdClose will result in incorrect board open counts
used by the driver.

If this function fails, you cannot access the board. Also, you do not need to call R2Sys-
BrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call R2SysBrdClose
first.

Calling this function with Mode = R2SysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = R2SysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use.

If Mode = R2SysExclusive, then you will not be able to open the board if any other
process has already opened the board, regardless of the mode the other process
used to open the board. Finally, if you do succeed in opening the board in this mode,
no other processes will be allowed to open the board.

R2_BAD_MUTEX Error occurred allocating a MUTEX object from
the operating system.

R2_BAD_CAM Error opening one of the camera files configured
for this board.

R2_BAD_INIT Error initializing the board.

R2SYS_ERROR_ALLOCATION Error allocating resources required for this
board.

R2SYS_ERROR Low-level error opening board.

R2BrdOpenCam BitFlow SDK

SDK-22-6 BitFlow, Inc. Version G.8

22.4 R2BrdOpenCam

Prototype R2RC R2BrdOpenCam(PR2ENTRY pEntry, RdRn *pBoard, BFU32 Mode, PBFCHAR
ForceCamFile)

Description Opens a Road Runner/R3 for access. This function must return successfully before any
other Road Runner/R3 SDK functions are called (with the exception of R2SysBoard-
FindXXXX functions).

Parameters pEntry

A pointer to a filled out R2ENTRY structure. This structure describes which board is to
be opened. The structure is filled out by a call to one of the R2SysBoardFindXXXX
functions.

*pBoard

A pointer to a RdRn handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

R2SysInitialize - initialize the board.
R2SysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
R2SysNoIntThread - do not start interrupt IRP thread.
R2SysNoCameraOpen - do not open any configured cameras.
BFSysNoAlreadyOpenMess - suppress already open warning message.
BFSysNoOpenErrorMess - suppress all error popups in open function
BFSysSecondProcessOpen - special mode that allows the board to be

opened twice in the same process (includes of some of the above
modes).

ForceCamFile

The camera file to open. The camera file should include the name and the file exten-
tion. If only the file name and extention are given, the camera configuration path is
searched for the camera file. (The camera configuration path by default is the Config
folder under the SDK root.) If the full path is given, the camera file will try and be
opened from that location.

Returns

R2_OK Function was successful.

Road Runner/R3 System Open and Initialization R2BrdOpenCam

Version G.8 BitFlow, Inc. SDK-22-7

Comments This function opens the board for all accesses. Call one of the R2SysBoardFindXXXX
functions first to find the board you wish to open. Then call this function to open to
board. The board must be opened before any other functions can be called. When
you are finished accessing the board you must call R2SysBrdClose, before exiting
your process. Failure to call R2SysBrdClose will result in incorrect board open counts
used by the driver.

If this function fails, you cannot access the board. Also, you do not need to call R2Sys-
BrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call R2SysBrdClose
first.

Calling this function with Mode = R2SysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = R2SysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use.

If Mode = R2SysExclusive, then you will not be able to open the board if any other
process has already opened the board, regardless of the mode the other process
used to open the board. Finally, if you do succeed in opening the board in this mode,
no other processes will be allowed to open the board.

R2_ALREADY_OPEN_PROC Another thread in the process has already
opened the board, this open not allowed.

R2_ALREADY_OPEN_EXEC_
YOU

Another process has opened the board in R2Sy-
sExclusive mode, this open is not allowed.

R2_ALREADY_OPEN_EXEC_
ME

You have attempted to open the board in R2Sy-
sExclusive but the board is already opened by
another process, this open not allowed.

R2_BAD_MUTEX Error occurred allocating a MUTEX object from
the operating system.

R2_BAD_CAM Error opening one of the camera files configured
for this board.

R2_BAD_INIT Error initializing the board.

R2SYS_ERROR_ALLOCATION Error allocating resources required for this
board.

R2SYS_ERROR Low-level error opening board.

R2BrdCamSel BitFlow SDK

SDK-22-8 BitFlow, Inc. Version G.8

22.5 R2BrdCamSel

Prototype R2RC R2BrdCamSel(RdRn Board, BFU32 CamIndex, BFU32 Mode)

Description Sets a board’s current camera to the camera with the given index. Depending on the
Mode, the board can also be initialized for this camera.

Parameters Board

Handle to board.

CamIndex

Index of camera to become current. Index is set in SysReg.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but do not modify the board.
R2SysConfigure - initialize the board for this camera.

Returns

Comments Each board has associated with it a list of configured cameras (set in the SysReg appli-
cation) and a current camera. By default, the current camera is the first camera in the
list of configured cameras. The current camera is important because it dictates the
parameters used for acquisition. There must be a current camera set in order to use
the acquisition functions. This function allows you to pick one of the configured cam-
eras to be the current camera.

If Mode = R2SysConfigure, the board will be initialized for the given camera.

This function is useful for switching on-the-fly between multiple pre-configured cam-
era types.

R2_OK Function was successful.

R2_INCOMP Camera file is incompatible with this board, or cam-
era file is incompatible with this version of the SDK.

R2_BAD_CNFG An error occurred initializing the board for this cam-
era file.

Road Runner/R3 System Open and Initialization R2BrdCamSetCur

Version G.8 BitFlow, Inc. SDK-22-9

22.6 R2BrdCamSetCur

Prototype R2RC R2BrdCamSetCur(RdRn Board, PR2CAM pCam, BFU32 Mode)

Description Sets the current camera to the camera object pCam that is not necessarily one of the
pre-configured cameras. The board can be optionally initialized to the camera.

Parameters Board

Handle to board.

pCam

A camera object.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but does not modify the board.
R2SysConfigure - initialize the board for this camera.

Returns

Comments This function sets the current camera to a camera object that is not one of the cameras
already configured for the board (via SysReg). The camera must already be opened
successfully (see R2CamOpen).

This function allows you to handle your own camera management. You can select,
open, configure and close cameras to suit your applications needs independently of
the SDK’s camera management.

If Mode = R2SysConfigure, the board will be initialized for the given camera.

R2_OK Function was successful.

R2_INCOMP Camera file is incompatible with this board, or cam-
era file is incompatible with this version of the SDK.

R2_BAD_CNFG An error occurred initializing the board for this cam-
era file.

R2BrdInquire BitFlow SDK

SDK-22-10 BitFlow, Inc. Version G.8

22.7 R2BrdInquire

Prototype R2RC R2BrdInquire(RdRn Board, BFU32 Member, PBFU32 pVal)

Description Returns parameters about the current board.

Parameters Board

Handle to board.

Member

Parameter to inquire about:

R2BrdInqModel - returns the board model. The parameter pVal will point to one of:

R2BrdValModel11
R2BrdValModel12
R2BrdValModel13
R2BrdValModel14
R2BrdValModel23
R2BrdValModel24
R2BrdValModel44

R2BrdInqSpeed - returns the board receivers speed. The parameter pVal will point to
one of:

R2BrdValSpeed40MHz
R2BrdValSpeedNormal

R2BrdInqLUT - the type of LUT mounted on this board. The parameter pVal will point
to one of:

R2BrdValLUTNone
R2BrdValLUT16
R2BrdValLUT8And12

R2BrdInqIDReg - the current setting of the ID switch on the board (0,1,2,3).

Camera inquiry parameters are also valid. The pVal parameter will point to the value
for the board’s current camera. See R2CamInquire for the meaning of these mem-
bers.

R2CamInqXXXX

pVal

Pointer returned containing the requested value.

Road Runner/R3 System Open and Initialization R2BrdInquire

Version G.8 BitFlow, Inc. SDK-22-11

Returns

Comments This function is used to inquire of the system characteristics of the board. This func-
tion can also be called with R2CamInquire Members, which are then passed to that
function using the board’s current camera.

R2_OK Function was successful.

R2_BAD_INQ_PARAM The Member parameter is unknown.

R2BrdClose BitFlow SDK

SDK-22-12 BitFlow, Inc. Version G.8

22.8 R2BrdClose

Prototype R2RC R2BrdClose(RdRn Board)

Description Closes the board and frees all associated resources.

Parameters Board

Handle to board.

Returns

Comments This function closes the board and releases associated resources. This function must
be called whenever a process exits regardless of the reason the process is exiting.
The only time that this function does not have to be called is if R2SysBrdOpen fails.
This function decrements the internal counters that are used to keep track of the num-
ber of processes that have opened the board.

R2_OK In all cases.

Road Runner/R3 System Open and Initialization R2BrdAqTimeoutSet

Version G.8 BitFlow, Inc. SDK-22-13

22.9 R2BrdAqTimeoutSet

Prototype R2RC R2BrdAqTimeoutSet(RdRn Board, BFU32 Timeout)

Description Sets the timeout value for this board's current camera.

Parameters Board

Board to select the camera for.

Timeout

New value for timeout, in milliseconds.

Returns

Comments This function sets the timeout value for this board's current camera.

R2_OK If successful.

Non-zero On error.

R2BrdAqSigGetCur BitFlow SDK

SDK-22-14 BitFlow, Inc. Version G.8

22.10 R2BrdAqSigGetCur

Prototype R2RC R2BrdAqSigGetCur(RdRn Board, PBFVOID *pAqSig)

Description Gets the current acquire signal.

Parameters Board

Board to select.

*pAqSig

Pointer to storage for acquire signal.

Returns

Comments This function gets the current acquire signal. See the section on signals to understand
what a signal is.

R2_OK If successful.

Non-zero On error.

Road Runner/R3 System Open and Initialization R2BrdAqSigSetCur

Version G.8 BitFlow, Inc. SDK-22-15

22.11 R2BrdAqSigSetCur

Prototype R2RC R2BrdAqSigSetCur(RdRn Board, PBFVOID pAqSig)

Description Sets the current acquire signal to a signal record provided by the caller.

Parameters Board

Board to select.

pAqSig

Pointer to caller’s signal record.

Returns

Comments This function sets the current acquire signal to a signal record provided by the caller.

R2_OK If successful.

Non-zero On error.

R2BrdQTabGetCur BitFlow SDK

SDK-22-16 BitFlow, Inc. Version G.8

22.12 R2BrdQTabGetCur

Prototype R2RC R2BrdQTabGetCur(RdRn Board, PBFVOID *pQuad, BFU32 QuadBank)

Description Gets the current quad table pointer.

Parameters Board

Board to select.

*pQuad

Pointer to new current quad table.

QuadBank

Quad bank to set

Returns

Comments This function gets the current quad table pointer.

R2_OK If successful.

Non-zero On error.

Road Runner/R3 System Open and Initialization R2BrdQTabSetCur

Version G.8 BitFlow, Inc. SDK-22-17

22.13 R2BrdQTabSetCur

Prototype R2RC R2BrdQTabSetCur(RdRn Board, PBFVOID pQuad, BFU32 QuadBank)

Description Sets the current quad table pointer to a quad table the user has built.

Parameters Board

Board to select.

pQuad

Pointer to new current quad table.

QuadBank

Quad bank to set.

Returns

Comments This function sets the current quad table pointer to a quad table the user has built.

R2_OK If successful.

Non-zero On error.

R2BrdCamGetFileName BitFlow SDK

SDK-22-18 BitFlow, Inc. Version G.8

22.14 R2BrdCamGetFileName

Prototype R2RC R2BrdCamGetFileName(RdRn Board, BFU32 Num, PBFCHAR CamName,
BFSIZET CamNameStLen)

Description Gets the file name of the attached camera(s).

Parameters Board

Board to select.

Num

Camera number to get the name of.

CamName

Contains the file name of the camera configuration.

CamNameStLen

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter CamName.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. These configurations are attached to the board in SysReg. The Num parame-
ter corresponds to the number configuration in the list of attached cameras in SysReg.

R2_OK If successful.

Non-zero On error.

Road Runner/R3 System Open and Initialization R2BrdCamGetCur

Version G.8 BitFlow, Inc. SDK-22-19

22.15 R2BrdCamGetCur

Prototype R2RC R2BrdCamGetCur(RdRn Board, PR2CAM *pCam)

Description Gets a pointer to the current camera configuration structure.

Parameters Board

Board to select.

*pCam

Pointer to new current quad table.

Returns

Comments This function a pointer to the current camera configuration structure. The structure
contains all the data that is in the camera configuration file.

R2_OK If successful.

Non-zero On error.

R2BrdCamGetCur BitFlow SDK

SDK-22-20 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-23-1

Road Runner/R3 Acquisition

Chapter 23

23.1 Introduction

The Acquisition Functions are some of the most important in the SDK. While the initializa-
tion functions set up the board’s registers for a particular camera, these functions do most
of the work required to get the board reading to DMA the images to memory.

The functions are organized into three groups:

Setup functions
Command function
Clean up functions

The concept here is that the setup functions are time and CPU intensive, so they should
be called before any time critical processing has begun. In a sense, these are extensions
of the initialization process. Once the setup functions are called for a particular destina-
tion buffer, they need not be called again.

The command function is designed to be used during time critical operations, and
require minimal CPU time. They can be told to return immediately so that other opera-
tions can be performed simultaneously with acquisition. The command function can be
called over and over, as many times as needed, to acquire the buffers locked down in the
setup functions.

The cleanup functions free up any resources allocated in the setup functions, and put the
DMA engine in an idle mode.

For example, the basic flow of a program would be:

// Initialization

R2AqSetup
Loop
{

R2AqCommand
}
R2AqCleanup

The bulk of the work is done in the R2AqSetup functions. These functions create a scatter
gather table based on the virtual memory address, called a relative QTab.

The relative QTab is passed to the kernel driver, where the destination buffer is locked
down (so that it cannot be paged to disk) and the physical address are determined for
each page of the buffer (NT usually uses 4096 byte pages). These physical addresses are
used to build a physical QTab. This physical QTab is then written to the board in prepara-
tion scatter gather DMAing.

Introduction BitFlow SDK

SDK-23-2 BitFlow, Inc. Version G.8

Finally, the DMA engine is initialized and started. Again, this function need be called
only once, for a particular destination buffer.

This function also supports dual buffer acquisition. In this case, the setup functions are
called twice, once for each buffer. Whenever an application is finished acquiring to a
buffer, one of the R2AqCleanUp functions must be called. You cannot call R2AqSetup
for a different buffer before calling R2AqCleanUp for the previous buffer. The only
exception to this is in the case dual buffering. When using dual buffers, R2AqClean
need only be called once to cleanup from both calls to R2AqSetup.

The R2AqCommand can be called either synchronously or asynchronously. In the syn-
chronous case, the function does not return until the command has completed. In the
asynchronous case, the function returns as soon as the command has been issued to
the board. If you need to synchronize your process with the acquisition, you can use
the R2AqWaitDone function or you can use the signaling system. Signaling is the best
way to synchronize to repeated end of frame signals as they do not take any CPU
cycles.

The R2AqSetup and R2AqCleanup functions are designed to handle acquisition to
host based memory or virtual memory. The R2AqDispSetup and R2AqDispCleanUp
are designed to handle acquisition to physical memory, such as a VGA or other desti-
nation on the PCI bus. The main difference is that the destination pointer passed to
the setup function points to a virtual memory buffer (and thus a physical page address
must be calculated) in the R2AqSetup case, and points to actual physical memory in
the R2AqDispSetup case.

Road Runner/R3 Acquisition R2AqSetup

Version G.8 BitFlow, Inc. SDK-23-3

23.2 R2AqSetup

Prototype R2RC R2AqSetup(RdRn Board, PBFVOID pDest, BFU32 DestSize, BFS32 Stride,
BFU32 DestType, BFU32 LutBank, BFU32 LutMode, BFU8 QuadBank, BFBOOL
FirstBank)

Description Sets a Road Runner/R3 for acquisition to a host buffer. This function must be called
before any acquisition command is issued.

Parameters Board

Handle to board.

pDest

A void pointer to the destination buffer (already allocated).

DestSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in bytes, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

DestType

Type of destination memory:

R2DMADataMem - host memory
R2DMABitmap - display memory

LutBank

The LUT bank to pass the image through:

R2LutBank0 - LUT bank 0
R2LutBank1 - LUT bank 1
R2LutBypass - bypass LUTs

LutMode

The mode of the LUT to use:

R2Lut8Bit - LUTs are programmed as 8 bits
R2Lut12Bit - LUTs are programmed as 12 bits

R2AqSetup BitFlow SDK

SDK-23-4 BitFlow, Inc. Version G.8

R2Lut16Bit - board has 16-bit LUTs (only available on 16-bit LUT boards)

QuadBank

The QTab bank to use:

R2QTabBank0 - use bank 0
R2QTabBank1 - use bank 1

FirstBank

For acquisition to single buffer, set to TRUE.

For acquisition using two ping-pong buffers, this parameter is used to indicate which
buffer will be acquired into first:

TRUE - for first bank to acquire into
FALSE - for second bank to acquire into

Returns

Comments This function sets up the entire Road Runner/R3’s acquisition systems for acquisition
to host. It will set up QTABs (relative and physical), and write them to the board. The
QTABs are based on the current camera pointer in the board structure. This function
need be called only once, before acquisition begins. It does not need to be called
again unless R2AqCleanUp is called. R2AqCleanUp should be called when done
acquiring in order to free up resources used by this process. The only reason to call
this function again is to acquire into a different host buffer or acquire with a different
type of camera. Once this function is called, the function R2AqCommand is used to
snap, grab, freeze or abort acquisition.

R2_OK If successful.

R2_BAD_ALLOC Resources required for this operation could not be
allocated.

R2_CON_QTAB_BANK_
ERR

The QuadBank parameter is invalid.

R2_AQSETUP_FAIL Other failure.

Road Runner/R3 Acquisition R2AqCommand

Version G.8 BitFlow, Inc. SDK-23-5

23.3 R2AqCommand

Prototype R2RC R2AqCommand(RdRn Board, BFU32 Command, BFU32 Mode, BFU8 Quad-
Bank)

Description Once the Road Runner/R3 is set up for acquisition with R2AqSetup, this function
issues the actual acquisition command.

Parameters Board

Handle to board.

Command

Acquisition command to initiate:

R2ConGrab - starting at the beginning of the next frame, acquire every
frame.

R2ConSnap - starting at the beginning of the next frame, acquire one
frame.

R2ConFreeze - stop acquiring at the end of the current frame. If in
between frames, do not acquire any more frames.

R2ConAbort - stop acquiring immediately. If in the middle of the frame,
the rest of the frame will not be acquired.

R2ConReset - reset conditions after an abort or overflow. The board is set
up as it was when R2AqSetup was called.

Mode

This function can operate in two modes:

R2ConAsync - as soon as the command is issued return.
R2ConWait - wait for the current command to complete. For a snap, the

function will return when the entire frame has been acquired into mem-
ory. For a grab, the function will wait until the first frame has begun to
be acquired. For a freeze, the function waits for the current frame to
end. All other commands return immediately.

QuadBank

When Command = R2ConReset, this is the QTab bank to be set up for. See R2Aq-
Setup. For an R2 using host QTabs or an R3, this parameter is ignored.

Returns

R2_OK If successful.

R2_AQ_NOT_SETUP R2AqSetup has not yet been called and the board is
not ready for an acquisition command.

R2AqCommand BitFlow SDK

SDK-23-6 BitFlow, Inc. Version G.8

Comments This function can only be called after R2AqSetup is called. R2AqSetup need only be
called once for any number and combination of calls to R2AqCommand. Basically,
you call R2AqSetup once for a given host buffer, then call R2AqCommand as many
times as you need to get data into that buffer. Call R2AqCleanUp when you are done
acquiring into that buffer. Then the procedure starts over again for the next buffer.

The R2AqXXXX commands handle both DMA and camera acquisition. No other com-
mands are needed to handle the process of acquiring into memory.

If you call this function with Mode = R2ConWait, it will wait for the acquisition to com-
plete, in the case of a snap or freeze command, or wait for the acquisition to begin, in
the case of a grab command. This is an efficient wait that consumes minimal CPU
cycles. The function will return when the last pixel has been DMAed into memory.
Alternatively, you can call the function with Mode = R2ConAsync, and the function
will return as soon as the command has been issued. You can find out how much data
has been DMAed by calling R2AqProgress. You can also just wait for the end of
acquisition by calling R2AqWaitDone.

The functions mentioned above use the SDK’s signaling system to efficiently wait for
events. If you wish to have a higher level of control you can call the R2SignalXXXX
functions yourself. These functions use a signaling system that allow processes to be
notified of Road Runner/R3 events and interrupts. For acquisition, wait for the R2Int-
TypeEOD signal. This signal occurs at the end of every frame, in both grab and snap
mode. This signal occurs when the last pixel is DMAed into memory.

Calling this function with Command = R2ConAbort will stop acquisition immediately.
The acquisition process can be left anywhere in the frame. You must call this function
with Command = R2ConReset before any more acquire commands can be issued.
Alternatively, you can call R2AqCleanUp and start over with R2AqSetup

R2_BAD_AQ_CMD A snap or grab command has already been issued
and the board is already acquiring.

R2_BAD_STOP The function was unable to reset the board.

R2_CON_QTAB_BANK_
ERR

The QuadBank parameter is incorrect.

RS_BAD_DMA_SETUP The board has not been set up properly for DMA.

R2_AQSTRT_TIMEOUT A time-out occurred waiting for acquisition to begin.

R2_AQEND_TIMEOUT A time-out occurred waiting for acquisition to end.

Road Runner/R3 Acquisition R2AqCleanUp

Version G.8 BitFlow, Inc. SDK-23-7

23.4 R2AqCleanUp

Prototype R2RC R2AqCleanUp(RdRn Board)

Description Frees all resources used by the acquisition process. Makes sure the board is in a sta-
ble state.

Parameters Board

Handle to board.

Returns

Comments This function frees all of the resources that were allocated in R2AqSetup. Do not call
this function unless you have already called R2AqSetup, and unless you are finished
acquiring into the current buffer.

This function does not free the destination buffer passed to R2AqSetup in the pDest
parameter.

R2_OK In all cases.

R2AqWaitDone BitFlow SDK

SDK-23-8 BitFlow, Inc. Version G.8

23.5 R2AqWaitDone

Prototype R2RC R2AqWaitDone(RdRn Board)

Description Waits for the current acquisition to complete.

Parameters Board

Handle to board.

Returns

Comments This function efficiently waits for the current acquisition to complete. The completion
is denoted by the last pixel being DMAed into memory. The function will return with a
time-out error if the acquisition has not been completed by the designated acquisi-
tion time-out amount. This time is normally set in the camera configuration file, but
can be changed in software as well, see R2CamSetTimeout. This function will return
immediately if the acquisition has already completed. This function will also return
immediately (with an error code), if the board is in a state where acquisition will not
complete without further acquisition commands.

R2_OK The current acquisition has completed.

R2_AQ_NOT_SETUP The acquisition process has not been set up yet.

R2_BAD_WAIT The board is currently in grab mode and acquisition
will not end, or there is another acquisition com-
mand pending after this one is completed.

R2_AQEND_TIMEOUT The acquisition time-out expired before the acquisi-
tion command completed.

Road Runner/R3 Acquisition R2AqNextBankSet

Version G.8 BitFlow, Inc. SDK-23-9

23.6 R2AqNextBankSet

Prototype R2RC R2AqNextBankSet(RdRn Board, BFU8 QuadBank)

Description For ping-pong style acquisition, this function sets up the board for the next QTab
bank to use for acquisition.

Parameters Board

Handle to board.

QuadBank

Next QTab bank to use for acquire - must be 0 or 1.

Returns

Comments This function sets the next QTab bank to use for acquisition. The Road Runner/R3 has
two QTab banks that can be loaded for two destinations by calling R2AqSetup twice.
By default, the Road Runner/R3 will use the same bank continuously. This function can
be called any time during the current frame to switch the bank for the next frame.

You must call R2AqSetup twice (once with the parameter QuadBank = 0 and once
with QuadBank = 1) before using this function. Switching to a QTab bank that has not
been loaded will cause unpredictable behavior.

In host QTab mode or with an R3 board, this function is not needed since the qtabs
are build in the host computer’s memory.

R2_OK In all cases.

R2AqFrameSize BitFlow SDK

SDK-23-10 BitFlow, Inc. Version G.8

23.7 R2AqFrameSize

Prototype R2RC R2AqFrameSize(RdRn Board, BFU32 XSize, BFU32 YSize)

Description This function provides the ability to change the image height and image width.

Parameters Board

Handle to board.

XSize

The value to change the XSize too.

YSize

The value to change the YSize too.

Returns

Comments This function is used to change the size of the image being acquired, from software.
With this function the size of the frame can be changed on the fly, without the use of
camera files. This function is limited to use with only free run camera files, and may not
work with sophisticated camera files.

This function assumes the CTABs and control registers have already been initialized to
a working state by one of the initialization functions (e.g. R2BrdOpen). The function
uses the current state to determine how to make the requested modifications. If the
current board state is non-functional, this function will fail.

This function can be called before R2AqSetup and the new size will overwrite the size
specified by the camera file. To change the size after R2AqSetup has been called
R2AqCleanup must be called then R2AqFrameSize and R2AqSetup. The following is
an example of the order needed to change the size of the frame after R2AqSetup has
been called:

// Stop acquisition

R2_OK If successful.

R2_BAD_FRM_SIZE Invalid frame size. The frame can be too big or small,
or the XSize is not a multiple of 4.

R2_CAM_SUPPORT Cam file being used is not supported by this func-
tion.

R2_HCTAB_X16 Pixel clock divided by 16 is not supported.

R2_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R2_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/or
HStop.

BF_BAD_ALLOC Couldn’t allocate memory.

Road Runner/R3 Acquisition R2AqFrameSize

Version G.8 BitFlow, Inc. SDK-23-11

R2AqCleanUp
R2AqFrameSize
R2AqSetup
// Begin acquisition

For a complete example on how to use the XXAqFrameSize function, see the CiChan-
geSize example included in the SDK.

The minimum XSize this functions supports is 4 and a minimum YSize of 2. The maxi-
mum YSize is 32768 and the maximum XSize is 8192. This function will return a R2_
BAD_FRM_SIZE error for any of these problems. Another precaution to take is that the
XSize needs to be a multiple of 4. Any XSize value that is not a multiple of 4 will give a
R2_BAD_FRM_SIZE error.

It is left up to the user not to exceed the sensor size of the camera. For example if the
user is using a area scan camera with a sensor size of 640x480 and tries and make the
frame size 800x600, this function will try to acquire the 800x600 frame size even
though the camera can not provide it. The user will end up with a scrambled or unsta-
ble image.

This function only supports the pixel clock divided by 4. If the pixel clock divided by
16 is being used, error R2_HCTAB_X16 will be returned.

R2AqReengage BitFlow SDK

SDK-23-12 BitFlow, Inc. Version G.8

23.8 R2AqReengage

Prototype R2RC R2AqReengage(RdRn Board, BFU8 QuadBank)

Description Engages the physical QTab for the given bank.

Parameters Board

Handle to board.

QuadBank

The next physical QTab bank to use.

Returns

Comments This function is used to engage the physical QTab for the bank specified by the Quad-
Bank parameter. This function only needs to be used if the acquisition or the DMA is
aborted in the middle of the frame (for example, when using start-stop triggering).
This function is intended to be used with qtabs on the host. However, calling it with
board qtabs will not cause any problems.

R2_OK If successful.

R2_BAD_CON_PARAM QuadBank is not equal to R2QTabBank0 or R2QTab-
Bank1

R2_AQ_NOT_SETUP R2AqSetup has not yet been called and the board is
not ready for an acquisition command.

BF_NULL_POINTER ChainArray is NULL.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has already
been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board.

BF_QUAD_GOING Attempt to engage QTab when board is DMAing.

BF_BAD_CHAIN Attempting to select a frame number when there is
only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

Road Runner/R3 Acquisition R2AqROISet

Version G.8 BitFlow, Inc. SDK-23-13

23.9 R2AqROISet

Prototype R2RC R2AqROISet(RdRn Board, BFU32 XOffset, BFU32 YOffset, BFU32 XSize,
BFU32 YSize)

Description This function provides the ability to change the region of interest acquired by the
camera.

Parameters Board

Handle to board.

XOffset

The number of pixels to offset in the x-axis.

YOffset

The number of pixels to offset in the y-axis.

XSize

The value to change the XSize too.

YSize

The value to change the YSize too.

Returns

Comments This function is used to change the region of interest (ROI) of the image being
acquired from the camera, from software. With this function the ROI of the frame can
be changed on the fly, without the use of camera files. This function is limited to use
with only free run camera files, and may not work with sophisticated camera files.

R2_OK If successful.

R2_BAD_FRM_SIZE Invalid frame size. The frame can be too big or small,
or the XSize is not a multiple of 4.

R2_CAM_SUPPORT Cam file being used is not supported by this func-
tion.

R2_HCTAB_X16 Pixel clock divided by 16 is not supported.

R2_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R2_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/or
HStop.

BF_BAD_ALLOC Couldn’t allocate memory.

R2AqROISet BitFlow SDK

SDK-23-14 BitFlow, Inc. Version G.8

This function assumes the CTABs and control registers have already been initialized to
a working state by one of the initialization functions (e.g. R2BrdOpen). The function
uses the attached camera file to determine how to make the requested modifications.
The ROI must stay within the boundaries of the attached camera sensor being use. If
the current board state is non-functional, this function will also be non-functional.

This function can be called before R2AqSetup and the new settings will overwrite the
settings specified by the camera file. To change the size after R2AqSetup has been
called, R2AqCleanup must be called then R2AqROISet and R2AqSetup. The following
is an example of the order needed to change the ROI of the frame after R2AqSetup
has been called:

// Stop acquisition
R2AqCleanUp
R2AqROISet
R2AqSetup
// Begin acquisition

The minimum XSize this functions supports is 4 and a minimum YSize of 2. The maxi-
mum YSize is 32768 and the maximum XSize is 8192. This function will return a R2_
BAD_FRM_SIZE error for any of these problems. Another precaution to take is that the
XSize needs to be a multiple of 4. Any XSize value that is not a multiple of 4 will give a
R2_BAD_FRM_SIZE error.

It is left up to the user to verify that the ROI dose not exceed the x and y sizes or
boundaries in the camera sensor. For example if the user is using a area scan camera
with a sensor size of 640x480 and tries and make the frame size 800x600, this function
will try to acquire the 800x600 frame size even though the camera can not provide it.
The user will end up with a scrambled or unstable image. Another example would be
if the same 640x480 camera file is used with an xsize that is less than 640 and a ysize
that is less then 480, but the x or y offset puts the ROI beyond the 640x480 borders.

This function only supports the pixel clock divided by 4. If the pixel clock divided by
16 is being used, error R2_HCTAB_X16 will be returned.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-24-1

Road Runner/R3 Camera Configuration

Chapter 24

24.1 Introduction

One of the most powerful features of the Road Runner/R3 is the ability for the board to
interface to an almost infinite variety of cameras. The knowledge behind these interfaces
is stored in the camera configuration files.

The normal way a Road Runner/R3 application works is that the board is initialized to
interface to the camera currently attached to the board. The currently attached camera is
selected in the SysReg utility program. Normally, an application is written so that it will
work with whatever camera is attached. The board is initialized for the currently attached
camera when R2BrdOpen is called. If an application is written this way there is no need to
call any of the functions in this chapter. However, some users may want to manage what
cameras are attached and how the user switches between them using their own software.
For this reason, these camera configuration functions are provided.

The normal flow for an application that wants to manage its own camera files is as follows:

R2BrdOpen
R2CamOpen
R2BrCamSetCur
// processing and acquisition
R2CamClose
R2BrdClose

If using more than one camera:

R2BrdOpen
R2CamOpen // open camera 0
R2CamOpen // open camera 1
R2BrCamSetCur // configure for camera 0
// processing and acquisition
R2BrCamSetCur // configure for camera 1
// processing and acquisition
R2CamClose // close camera 0
R2CamClose // close camera 1
R2BrdClose

R2CamOpen BitFlow SDK

SDK-24-2 BitFlow, Inc. Version G.8

24.2 R2CamOpen

Prototype R2RC R2CamOpen(RdRn Board, PCHAR CamName, PR2CAM *pCam)

Description Allocates a camera configuration object, opens a camera configuration file, and loads
the file into the object.

Parameters Board

Handle to board.

CamName

The name of the camera file to open. Do not include the path. The camera file must
be in the configuration directory (see the SysReg application). For example:
“Pn9700.cam”.

*pCam

A pointer to a camera object. The memory to hold the object is allocated in this func-
tion.

Returns

Comments This function allocates memory to hold a camera configuration object, locates the
given camera configuration file in the configuration directory, checks the file for
errors, then loads the camera configuration parameters into the camera object. The
camera object is used to tell the system how to set up the board to acquire from a par-
ticular camera. Use the program CamVert to edit camera configuration files.

R2_OK If successful.

R2_NO_CNFDIR_REG_KEY The configuration directory entry is missing in the
register (run SysReg).

R2_BAD_PATH Error building the path to the camera file.

R2_BAD_STRUCT Error calculating the size of the camera structure.

R2_BAD_ALLOC Cannot allocate memory to perform open.

R2_BAD_CNF_FILE Error opening or reading configuration file.

R2_BAD_HEADER Error in configuration file header. This could include
an error in one or more of the following items: signa-
ture (Road Runner/R3 configuration), endian test
(endian model is unknown), revision (camera revision
is incompatible), size (size of file is not the same as
written) and CRC (byte error in file).

R2_BAD_BINR Error reading configuration item from file.

R2_BAD_CNFA Error inserting configuration item into camera object.

Road Runner/R3 Camera Configuration R2CamOpen

Version G.8 BitFlow, Inc. SDK-24-3

The resulting camera object can be passed to other functions such as R2BrdCamSet-
Cur.

The resources allocated by the function must be freed by calling R2CamClose.

R2CamInquire BitFlow SDK

SDK-24-4 BitFlow, Inc. Version G.8

24.3 R2CamInquire

Prototype R2RC R2CamInquire(RdRn Board, PR2CAM pCam, BFU32 Member, PBFU32 pVal)

Description Returns information about the given camera.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Member

Characteristic to find the value of. The member must be one of:

R2CamInqXSize - width of image in pixels.
R2CamInqYSize - height of image in lines.
R2CamInqFormat - image format.
R2CamInqPixBitDepth - depth of pixel in bits, as acquired to host.
R2CamInqBytesPerPix - depth of pixel in bytes, as acquired to host.
R2CamInqBytesPerPixDisplay - depth of pixel in bytes, as acquired to dis-

play.
R2CamInqBitsPerSequence - depth of multi-channel pixel in bits, as

acquired to host.
R2CamInqBitsPerSequenceDisplay - depth of multi-channel pixel in bits,

as acquired to display.
R2CamInqHostFrameSize - total size of image in bytes, as acquired to host.
R2CamInqDisplayFrameSize - total size of image in bytes, as acquired to

display.
R2CamInqHostFrameWidth - width of image in bytes, as acquired to host.
R2CamInqDisplayFrameWidth - width of image in bytes, as acquired to

display.
R2CamInqAqTimeout - number of milliseconds to wait before acquisition

command times out.
R2CamInqCamType - camera type.
R2CamInqControlType - type of camera control accessible through API.

pVal

Pointer to value of the characteristic.

Returns

R2_OK If successful.

R2_BAD_INQ_PARAM Unknown Member parameter.

Road Runner/R3 Camera Configuration R2CamInquire

Version G.8 BitFlow, Inc. SDK-24-5

Comments This function is used to inquire about characteristics of a camera. For 8-bit cameras,
the parameter R2CamInqHostFrameSize is equal to R2CamInqDisplayFrameSize. The
parameter only differs for pixel depths greater than eight.

Non-zero On error.

R2CamClose BitFlow SDK

SDK-24-6 BitFlow, Inc. Version G.8

24.4 R2CamClose

Prototype R2RC R2CamClose(RdRn Board, PR2CAM pCam)

Description Frees resources used by a camera object.

Parameters Board

Handle to board.

pCam

Camera object.

Returns

Comments This function frees all resources used by a camera object.

R2_OK In all cases.

Road Runner/R3 Camera Configuration R2CamAqTimeoutSet

Version G.8 BitFlow, Inc. SDK-24-7

24.5 R2CamAqTimeoutSet

Prototype R2RC R2CamAqTimeoutSet(RdRn Board, PR2CAM pCam, BFU32 Timeout)

Description Sets the acquisition timeout variable in the given camera configuration.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Timeout

New value for timeout, in milliseconds.

Returns

Comments This function sets the timeout value for an earlier configuration

R2_OK If successful.

Non-zero On error.

R2CamAqTimeoutSet BitFlow SDK

SDK-24-8 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-25-1

Road Runner/R3 Interrupt Signals

Chapter 25

25.1 Introduction

The purpose of the Signal Function calls is to make hardware interrupts available to user-
level applications in a simple and efficient set of functions. In fact, under Windows NT,
there is no way for a user-level application to get direct notification of a hardware inter-
rupt. Only kernel-level drivers can contain interrupt service routines (ISR). Most customers
do not want to deal with the complications of writing ISRs anyway, so BitFlow has come up
with this signaling system.

Basically, a signal is a wrapper around a Windows NT semaphore object. The signal has a
state and a queue. Every time an interrupt occurs, the signal’s state changes. The nice
thing about signals is that you can wait for their state to change, without using any CPU
cycles. This is what makes them so efficient. This means that you can have one thread pro-
cessing images while another is waiting for the next image to be completely DMAed. The
thread that is waiting for the signal consumes very little CPU time, thus making most of
the CPU available for processing.

The way these functions are used is that you start by creating a signal with the R2Signal-
Create. There are a number of different interrupts that the signal can wait for, and it is in
this function that you specify the one you want. Once the signal is created, your applica-
tion waits for the interrupt with either the R2SignalWait or the R2SignalWaitNext function.
The difference being the R2SignalWait function uses a signals queue. If an interrupt has
occurred before this function is called, then this function will return immediately. It will
continue to return immediately until there are no more interrupts in the queue. The R2Sig-
nalWaitNext function always waits for the next interrupt after being called, regardless of
how many have occurred since it was last called.

Signals can be used in a single thread application, but whenever one of the wait functions
is called, execution will be blocked until the interrupt occurs. Because this situation can
potentially hang a process, a timeout parameter is provided for all of the wait functions. If
you need an application to process data while waiting on an image to be captured, create
a separate thread to call the wait function. Meanwhile, another thread can be processing
with most of the CPUs cycles. A thread waiting on a signal can be cancelled with the func-
tion R2ThreadCancel. This causes the waiting thread to return from the wait function with
an error code indicating that it has been cancelled.

The following is an example of how these functions can be called:

Introduction BitFlow SDK

SDK-25-2 BitFlow, Inc. Version G.8

Int ImageIn = 0
main ()
{

R2BrdOpen// open board
R2SignalCreate// create the signal for EOF
CreateThread(EOFThread)// create a thread
while (KeepProcessing)// main processing loop
{

// here we loop until we have an image
while (ImageIn !=1)
{

// secondary processing
}

// now we have an image so process it

ImageIn = 0 // reset variable

// primary image processing

}
}

// clean up
R2SignalCancel// cancel signal kill thread
R2SignalFree// free signal resources
R2BrdClose// close board

}

// thread to watch for end of frame
EOFThread()
{

loop
{

rv = R2SignalWait // wait for signal
if(rv == CANCELED) // was returned value

cancel?
exit loop // yes, kill this thread else

else
ImageIn = 1 // no, set new image flag

}
}

Road Runner/R3 Interrupt Signals R2SignalCreate

Version G.8 BitFlow, Inc. SDK-25-3

25.2 R2SignalCreate

Prototype R2RC R2SignalCreate(RdRn Board, BFU32 Type, PR2SIGNAL pSignal)

Description Creates a signal that will allow user level thread to be notified of hardware interrupts.

Parameters Board

Handle to board.

Type

Type of interrupt signal to create. Must be one of the following:

R2IntTypeHW - hardware exception.
R2IntTypeFIFO - video FIFO overflow.
R2IntTypeDMADone -Non chaining DMA operation complete.
R2IntTypeEOD - End of DMA for current frame. Occurs when the last pixel

has been DMAed into memory. Users will create this signal ninety per-
cent of the time.

R2IntTypeCTab - interrupt column set in CTAB for current line.

pSignal

Pointer to R2SIGNAL structure.

Returns

Comments This function creates a signal object that is used to receive interrupt notifications from
the Road Runner/R3. The R2SignalWaitXXXX function takes a signal as a parameter.
These functions efficiently wait for an interrupt of the given type to occur. The best
way to use a signal is to create a separate thread that calls one of the R2Signal-
WaitXXXX functions. This thread will consume minimal CPU cycles until the interrupt
occurs. When the interrupt occurs, the signal is notified and the R2SignalWaitXXXX
functions will return. The thread can then take appropriate action, calling whatever
functions are necessary and/or send messages to the main application thread.

This signaling system is the only way to handle Road Runner/R3 interrupts at the user
application level

R2_OK If successful.

R2_BAD_SEMAPHORE Could not get semaphore object from operating sys-
tem.

R2_BAD_ALLOC Could not allocate memory for signal.

R2SignalCreate BitFlow SDK

SDK-25-4 BitFlow, Inc. Version G.8

More than one signal can be created for the same interrupt on the same board. Also,
more than one process and/or thread can wait for the same interrupt. When the inter-
rupt occurs, all of the signals will be notified in the order they were created. The signal
created by this function receives interrupt notification only from the Road Runner/R3
passed to this function in the Board parameter.

The most frequently used signal is Type = R2IntTypeEOD. The R2AqSetup function
automatically sets the interrupt bit in the last quad in the QTab of the current image.
This signal will be notified when the last pixel of the image has been DMAed into
memory, and the current acquisition is done in the case of a snap or freeze.

The signal created by this function must be cleaned up by calling R2SignalFree.

Road Runner/R3 Interrupt Signals R2SignalWait

Version G.8 BitFlow, Inc. SDK-25-5

25.3 R2SignalWait

Prototype R2RC R2SignalWait(RdRn Board, PR2SIGNAL pSignal, BFU32 TimeOut, PBFU32
pNumInts)

Description Efficiently waits for an interrupt to occur. Returns immediately if one has occurred
since the function was last called.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL previously created by R2SignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout.

pNumInts

Pointer to a BFU32. When the function returns, it will contain the number of interrupts
(the interrupt queue) that have occurred since this function was last called.

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function will return immediately if the interrupt
has occurred since the function was last called with this signal. The first time this func-
tion is called with a given signal, it will always wait, even if the interrupt has occurred
many times in the threads lifetime.

When this function returns, the pNumInts parameter will contain the number of inter-
rupts that have occurred since this function was last called. This is essentially an inter-
rupt queue. Normally this will be one. However, if one or more interrupts have
occurred, the function will return immediately and this variable will indicate the num-
ber that has occurred. This parameter is useful in determining if frames were missed.

R2_OK Interrupt has occurred.

R2_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

R2_SIGNAL_CANCEL Signal was canceled by another thread (see R2Sig-
nalCancel).

R2_BAD_SIGNAL Signal has not been created correctly or was not cre-
ated for this board.

R2_WAIT_FAILED Operating system killed the signal.

R2SignalWait BitFlow SDK

SDK-25-6 BitFlow, Inc. Version G.8

This function will continue to return immediately, reducing the number of interrupts in
the queue each time until every interrupt that has occurred has been acknowledged,
and the queue is empty.

To wait for the next interrupt and ignore any previous interrupts, use R2SignalWait-
Next.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

Road Runner/R3 Interrupt Signals R2SignalNextWait

Version G.8 BitFlow, Inc. SDK-25-7

25.4 R2SignalNextWait

Prototype R2RC R2SignalNextWait(RdRn Board, PR2SIGNAL pSignal, BFU32 TimeOut)

Description Like R2SignalWait, this function waits efficiently for an interrupt. However, this version
always ignores any interrupts that might have occurred since it was called last, and
just waits for the next interrupt.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL previously created by R2SignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function waits for the next interrupt, regardless of
the number of interrupts in the signal’s queue. The first time this function is called with
a given signal, it will always wait, even if the interrupt has occurred many times in the
threads lifetime.

Use R2SignalWait if you need a function that will return immediately if an interrupt has
already occurred.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

R2_OK Interrupt has occurred.

R2_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

R2_SIGNAL_CANCEL Signal was canceled by another thread (see R2Sig-
nalCancel).

R2_BAD_SIGNAL Signal has not been created correctly or was not cre-
ated for this board.

R2_WAIT_FAILED Operating system killed the signal.

R2SignalCancel BitFlow SDK

SDK-25-8 BitFlow, Inc. Version G.8

25.5 R2SignalCancel

Prototype R2RC R2SignalCancel(RdRn Board, PR2SIGNAL pSignal)

Description Cancels a signal, any R2SignalWaitXXX function will return with a value of R2_SIG-
NAL_CANCEL.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL to cancel.

Returns

Comments This function will cancel a signal. It is primarily used by multi-threaded applications
where one thread is waiting (with one of the R2SignalWaitXXXX functions) for a signal.
Another thread can cancel the signal with this function, thereby waking up the waiting
thread. When the waiting thread wakes up and the R2SignalWaitXXXX function
returns, the return value can be examined. If the return value is R2_SIGNAL_CANCEL,
the thread knows that the signal it was waiting for was canceled, and it can take
appropriate action.

This function is usually used as a clean way for the main application thread to tell wait-
ing threads to kill themselves.

Canceling a signal with this function will interfere with its internal interrupt counts.
Therefore, this function should only be called when synchronization with the interrupt
is no longer important and/or the signal is going to be destroyed.

R2_OK If successful.

R2_BAD_SIGNAL Signal does not exist.

Road Runner/R3 Interrupt Signals R2SignalQueueSize

Version G.8 BitFlow, Inc. SDK-25-9

25.6 R2SignalQueueSize

Prototype R2RC R2SignalQueueSize(RdRn Board, PR2SIGNAL pSignal, PBFU32 pNumInts)

Description Reports the current number of interrupts in a signal’s queue.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL whose queue is to be investigated.

pNumInts

Pointer to BFU32. When the function returns pNumInts, it will contain the number of
interrupts in the signal’s queue.

Returns

Comments This function returns the number of interrupts in a signal’s queue. This function is use-
ful for testing to see if any interrupts have come in for a given signal, when you do not
want to call one of the R2SignalWaitXXX functions. This function can be called any
time.

R2_OK If successful.

R2_BAD_SIGNAL Signal does not exist.

R2SignalQueueClear BitFlow SDK

SDK-25-10 BitFlow, Inc. Version G.8

25.7 R2SignalQueueClear

Prototype R2RC R2SignalQueueClear(RdRn Board, PR2SIGNAL pSignal)

Description Clears interrupts from a single queue.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL whose queue is to be investigated.

Returns

Comments This function clears all of the interrupts for a given signal’s queue. This allows a thread
to wait for the next interrupt to occur. This function is usually only used to re-synchro-
nize a signal to the current state of acquisition (i.e., ignore any interrupts that have
occurred in the past) before calling R2SignalWait. To always wait for the next inter-
rupt, call R2SignalWaitNext.

R2_OK If successful.

R2_BAD_SIGNAL Signal does not exist.

R2_WAIT_FAILED Error clearing queue.

Road Runner/R3 Interrupt Signals R2SignalFree

Version G.8 BitFlow, Inc. SDK-25-11

25.8 R2SignalFree

Prototype R2RC R2SignalFree(RdRn Board, PR2SIGNAL pSignal)

Description Frees all resources used by a signal.

Parameters Board

Handle to board.

pSignal

Pointer to R2SIGNAL whose queue is to be investigated.

Returns

Comments This function frees the resources used by a signal and removes it from the list of sig-
nals that get interrupt notification.

R2_OK In all cases.

R2SignalFree BitFlow SDK

SDK-25-12 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-26-1

Road Runner/R3 Camera Control Functions

Chapter 26

26.1 Introduction

The Road Runner/R3 is capable of controlling the timing of the currently attached camera.
On many cameras, the Road Runner/R3 can control the exposure time and the line/frame
rate. The part of the board that is programmed to set these parameters is the Road Run-
ner/R3’s control tables (CTABs). The CTABs are set to some default exposure time and
line/frame rate when the board is first initialized. The value of these parameters is set in
the camera configuration file. If something besides the default is needed, the CTABs can
be modified by the application to drive the camera to some other value. Normally, the
CTABs are modified using the R2CTabXXXX functions. However, using these CTAB func-
tions requires detailed knowledge of the camera, and how it is interfaces to the Road Run-
ner/R3 and its CTABs.

The purpose of the camera control functions is to make programming the exposure time
and line/frame rate easy and simple. These functions take exposure time and line/frame
rate in real world units. Internally, these functions calculate how to modify the CTABs
based on the requested parameters.

Currently, functions are only supplied for line scan cameras. There are two groups of func-
tions to control the exposure and line rate of a line scan camera. The first set is used when
the camera is in a free running mode. Free running means that all of the timing is gener-
ated on the Road Runner/R3. The second set is used when an encoder (line trigger) is
being used. In this case, the horizontal timing is in one shot mode, which means the one
line is acquired every time the encoder input is asserted. As a result, the encoder controls
the line rate, and the board can only control the exposure time.

For each group, there is a function to get the current exposure and line rate, a function
that returns the range that is possible for the current camera, and a function to set line
rate and exposure.

These functions do work for all cameras from all manufacturers. Please see the software
release notes for specific cameras that are supported.

R2CamLineScanTimingFreeRunGetRange BitFlow SDK

SDK-26-2 BitFlow, Inc. Version G.8

26.2 R2CamLineScanTimingFreeRunGetRange

Prototype R2RC R2CamLineScanTimingFreeRunGetRange(RdRn Board, BFU32 PixelClockFre-
quency, PBFU32 pMinExposureTime, PBFU32 pMaxExposureTime, PBFU32
pMinLineRate, PBFU32 pMaxLineRate)

Description Gets the minimum and maximum exposure period and line rate for a line scan camera
in free running mode.

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the Board is generat-
ing a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pMinExposureTime

Minimum exposure time in nanoseconds.

pMaxExposureTime

Maximum exposure time in nanoseconds.

pMinLineRate

Minimum line rate in lines per second.

pMaxLineRate

Maximum line rate in lines per second.

Returns

Comments This function calculates the minimum and maximum line rate and exposure time for
currently selected line scan camera in free-running mode. The function makes the rate
and exposure range calculations independently, that is, you may not be able to

R2_OK If successful.

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for the current cam-
era.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

Road Runner/R3 Camera Control Functions R2CamLineScanTimingFreeRunGetRange

Version G.8 BitFlow, Inc. SDK-26-3

achieve camera control over the entire range of both rate and exposure. In other
words, you may not be able to achieve all possible combinations of rate and expo-
sure, even if both parameters are kept with the ranges returned by this function.

If min = max = 0 for a particular parameter, then that parameter cannot be controlled.

R2CamLineScanTimingFreeRunSet BitFlow SDK

SDK-26-4 BitFlow, Inc. Version G.8

26.3 R2CamLineScanTimingFreeRunSet

Prototype R2RC R2CamLineScanTimingFreeRunSet(RdRn Board, BFU32 PixelClockFre-
quency, PBFU32 pExposureTime, PBFU32 pLineRate, BFU32 Priority)

Description Sets the exposure period and line rate for a line scan camera in free running mode.

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the board is gener-
ating a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pExposureTime

Exposure time desire in nanoseconds. If zero, exposure time not important.

pLineRate

Line rate in lines per second. If zero, line rate not important.

Priority

This variable indicates which parameter exposure or rate is more important in the
event that board is not capable of producing both the rate and the exposure desired.
This parameter must be one of the following values:

R2CamExposurePriority - attempt to set both the rate and exposure. If not
possible, then set the given exposure and adjust the rate.

R2CamRatePriority - attempt to set both the rate and exposure. If not pos-
sible, then set the given rate and adjust the exposure.

R2CamFailOnNotExact - if both rate and exposure cannot be achieved,
then return an error.

R2CamExposureUnimportant - set the exposure based on the given line
rate.

R2CamRateUnimportant - set the line rate based on the given exposure.

Returns

R2_OK If successful.

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for the current cam-
era.

Road Runner/R3 Camera Control Functions R2CamLineScanTimingFreeRunSet

Version G.8 BitFlow, Inc. SDK-26-5

Comments This function sets the exposure time and the line rate for the current line scan camera
in free running mode.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

R2_CAM_BAD_EXP The desired exposure is not possible.

R2_CAM_BAD_RATE The desired line rate is not possible.

R2_CAM_BAD_PRIORITY The priority parameter is not valid.

R2_CAM_NOT_EXACT Both the exact rate and exposure cannot be
achieved.

R2CamLineScanTimingFreeRunGet BitFlow SDK

SDK-26-6 BitFlow, Inc. Version G.8

26.4 R2CamLineScanTimingFreeRunGet

Prototype R2RC R2CamLineScanTimingFreeRunGet(RdRn Board, BFU32 PixelClockFre-
quency, PBFU32 pExposureTime, PBFU32 pLineRate)

Description Gets the current exposure period and line rate for a line scan camera in free running
mode.

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the board is gener-
ating a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pExposureTime

The current exposure time that the board is set for.

pLineRate

The current line rate that the board is set for.

Returns

Comments This function gets the current exposure time and the line rate for the current line scan
camera in free running mode.

R2_OK If successful.

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for current camera.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

R2_CAM_BAD_RESET The CTAB's horizontal reset does not make sense.

R2_CAM_BAD_EXPSR The exposure period cannot be calculated.

Road Runner/R3 Camera Control Functions R2CamLineScanTimingOneShotGetRange

Version G.8 BitFlow, Inc. SDK-26-7

26.5 R2CamLineScanTimingOneShotGetRange

Prototype R2RC R2CamLineScanTimingOneShotGetRange(RdRn Board, BFU32 PixelClock-
Frequency,
PBFU32 pMinExposureTime, PBFU32 pMaxExposureTime)

Description Gets the minimum and maximum of exposure period for a line scan camera in one
shot mode.

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the board is gener-
ating a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pMinExposureTime

Minimum exposure time in nanoseconds.

pMaxExposureTime

Maximum exposure time in nanoseconds.

Returns

Comments This function calculates the minimum and maximum exposure time for currently
selected line scan camera in one shot mode.

R2_OK If successful.

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for current camera.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

R2CamLineScanTimingOneShotSet BitFlow SDK

SDK-26-8 BitFlow, Inc. Version G.8

26.6 R2CamLineScanTimingOneShotSet

Prototype R2RC R2CamLineScanTimingOneShotSet(RdRn Board, BFU32 PixelClockFre-
quency, PBFU32 pExposureTime)

Description Sets the exposure for a line scan camera in one shot mode.

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the board is gener-
ating a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pExposureTime

The resulting exposure time that the board is set for.

Returns

Comments This function sets the exposure time the current line scan camera in one shot mode

R2_OK If successful

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for current camera.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

R2_CAM_BAD_EXP The desired exposure is not possible.

Road Runner/R3 Camera Control Functions R2CamLineScanTimingOneShotGet

Version G.8 BitFlow, Inc. SDK-26-9

26.7 R2CamLineScanTimingOneShotGet

Prototype R2RC R2CamLineScanTimingOneShotGet(RdRn Board, BFU32 PixelClockFre-
quency, PBFU32 pExposureTime)

Description Gets the current exposure period for a line scan camera in one shot mode.Parameters

Parameters Board

Handle to board.

PixelClockFrequency

Pixel clock frequency coming onto the board. If zero, we assume the board is gener-
ating a master clock and the pixel clock is derived from that or that the pixel clock is a
constant for the given camera type.

pExposureTime

The resulting exposure time that the board is set for.

Returns

Comments This function gets the current line scan camera's exposure in one shot mode.

R2_OK If successful.

R2_CAM_BAD_CAM_TYPE Current camera is not a line scan camera.

R2_CAM_NO_CONTROL Camera control not supported for current camera.

R2_CAM_BAD_HWIN The horizontal active window for the current camera
does not make sense.

R2_CAM_BAD_FREQ The pixel clock frequency is invalid.

R2_CAM_BAD_RESET The CTAB's horizontal reset does not make sense.

R2_CAM_BAD_EXPSR The exposure period cannot be calculated.

R2CamLineScanTimingOneShotGet BitFlow SDK

SDK-26-10 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-27-1

Road Runner/R3 LUTS

Chapter 27

27.1 Introduction

These functions allow an application full control over the Look Up Tables (LUTs) on the
Road Runner/R3. The LutPeek and LutPoke functions are fairly inefficient and should only
be used in the case of modifying a small number of entries. For accessing a larger num-
ber of entries or the entire LUT, create an array on the host and use the R2LutWrite and
R2LutRead functions. To create a “ramp” function in the LUTs, use the R2LutRamp func-
tion.

R2LutPeek BitFlow SDK

SDK-27-2 BitFlow, Inc. Version G.8

27.2 R2LutPeek

Prototype BFU32 R2LutPeek(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr)

Description Reads a single LUT value.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - peek an 8-bit value out of an 8-bit LUT.
R2Lut12Bit - peek a 16-bit value out of a 12-bit LUT.
R2Lut16Bit - peek a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - peek LUT bank 0.
R2LutBank1 - peek LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - peek LUT lane 0.
R2LutLane1- peek LUT lane 1.
R2LutLane2 - peek LUT lane 2.
R2LutLane3 - peek LUT lane 3.

Addr

LUT address.

Returns The LUT value.

Comments LUT definitions are declared in R2Reg.h.

Road Runner/R3 LUTS R2LutPoke

Version G.8 BitFlow, Inc. SDK-27-3

27.3 R2LutPoke

Prototype R2RC R2LutPoke(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 Value)

Description Writes a single LUT value to one or more LUT lanes.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - poke an 8-bit value into an 8-bit LUT.
R2Lut12Bit - poke a 16-bit value into a 12-bit LUT.
R2Lut16Bit - poke a 16-bit value into a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - poke LUT bank 0.
R2LutBank1 - poke LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - poke LUT lane 0.
R2LutLane1- poke LUT lane 1.
R2LutLane2 - poke LUT lane 2.
R2LutLane3 - poke LUT lane 3.

Addr

LUT address.

Value

LUT write value.

Returns

R2_OK Function succeeded.

R2_NO_BIG_LUTS Road Runner/R3 board doesn't support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2LutPoke BitFlow SDK

SDK-27-4 BitFlow, Inc. Version G.8

Comments LUT definitions are declared in R2Reg.h.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_POKE_ERR LUT poke failed.

Road Runner/R3 LUTS R2LutRead

Version G.8 BitFlow, Inc. SDK-27-5

27.4 R2LutRead

Prototype R2RC R2LutRead(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 NumEntries, PBFVOID pDest)

Description Reads a LUT.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - read an 8-bit value out of an 8-bit LUT.
R2Lut12Bit - read a 16-bit value out of a 12-bit LUT.
R2Lut16Bit - read a 16-bit value out of a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - read LUT bank 0.
R2LutBank1 - read LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - read LUT lane 0.
R2LutLane1- read LUT lane 1.
R2LutLane2 - read LUT lane 2.
R2LutLane3 - read LUT lane 3.

Addr

LUT address.

NumEntries

Number of LUT entries to read.

pDest

Storage for LUT entries. The size of the destination is based on the LUT mode being
used and the NunEntries. If R2Lut8Bit LUT mode is being used, memory should be
allocated for NumEntries of the BFU8 data type (a byte). Both R2Lut12Bit and
R2Lut16Bit modes should use NumEntries of the BFU16 data type (a word). A exam-
ple of the usage would be:

R2LutRead BitFlow SDK

SDK-27-6 BitFlow, Inc. Version G.8

BFU8 LUT8[256]; // R2Lut8Bit LUT mode.
BFU16 LUT16[4096]; // R2Lut12Bit and R2Lut16Bit LUT modes.

Returns

Comments LUT definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_NO_BIG_LUTS Road Runner/R3 board doesn't support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_TOO_MANY_LANES Only one lane may be read at a time.

R2_LUT_READ_ERR LUT read failed.

Road Runner/R3 LUTS R2LutWrite

Version G.8 BitFlow, Inc. SDK-27-7

27.5 R2LutWrite

Prototype R2RC R2LutWrite(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 NumEntries, PBFVOID pSource)

Description Writes a LUT.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - write an 8-bit value into an 8-bit LUT.
R2Lut12Bit - write a 16-bit value into a 12-bit LUT.
R2Lut16Bit - write a 16-bit value into a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - write LUT bank 0.
R2LutBank1 - write LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - write LUT lane 0.
R2LutLane1- write LUT lane 1.
R2LutLane2 - write LUT lane 2.
R2LutLane3 - write LUT lane 3.

Addr

LUT address.

NumEntries

Number of LUT entries to write.

pSource

Storage LUT data. The size of the source is based on the LUT mode being used and
the NunEntries. If R2Lut8Bit LUT mode is being used, memory should be allocated
for NumEntries of the BFU8 data type (a byte). Both R2Lut12Bit and R2Lut16Bit
modes should use NumEntries of the BFU16 data type (a word). A example of the
usage would be:

R2LutWrite BitFlow SDK

SDK-27-8 BitFlow, Inc. Version G.8

BFU8 LUT8[256]; // R2Lut8Bit LUT mode.
BFU16 LUT16[4096]; // R2Lut12Bit and R2Lut16Bit LUT modes.

Returns

Comments LUT definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_NO_BIG_LUTS Road Runner/R3 board doesn't support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_WRITE_ERR LUT write failed.

Road Runner/R3 LUTS R2LutFill

Version G.8 BitFlow, Inc. SDK-27-9

27.6 R2LutFill

Prototype R2RC R2LutFill(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 NumEntries, BFU32 Val)

Description Fills a LUT with a constant.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - write an 8-bit value into an 8-bit LUT.
R2Lut12Bit - write a 16-bit value into a 12-bit LUT.
R2Lut16Bit - write a 16-bit value into a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - write LUT bank 0.
R2LutBank1 - write LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - write LUT lane 0.
R2LutLane1- write LUT lane 1.
R2LutLane2 - write LUT lane 2.
R2LutLane3 - write LUT lane 3.

Addr

LUT address.

NumEntries

Number of LUT entries to fill.

Val

Fill value.

Returns

R2_OK Function succeeded.

R2LutFill BitFlow SDK

SDK-27-10 BitFlow, Inc. Version G.8

Comments LUT definitions are declared in R2Reg.h.

R2_NO_BIG_LUTS Road Runner/R3 board doesn't support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_FILL_ERR LUT fill failed.

Road Runner/R3 LUTS R2LutRamp

Version G.8 BitFlow, Inc. SDK-27-11

27.7 R2LutRamp

Prototype R2RC R2LutRamp(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Star-
tAddr, BFU32 EndAddr, BFU32 StartVal, BFU32 EndVal)

Description Fills a LUT with a ramp.

Parameters Board

Road Runner/R3 board ID.

Mode

LUT mode:

R2Lut8Bit - writes an 8-bit value into an 8-bit LUT.
R2Lut12Bit - writes a 16-bit value into a 12-bit LUT.
R2Lut16Bit - writes a 16-bit value into a 16-bit LUT.

Bank

LUT bank:

R2LutBank0 - write LUT bank 0.
R2LutBank1 - write LUT bank 1.

Lane

One or more LUT lanes ORed together:

R2LutLane0 - write LUT lane 0.
R2LutLane1- write LUT lane 1.
R2LutLane2 - write LUT lane 2.
R2LutLane3 - write LUT lane 3.

StartAddr

LUT start address.

EndAddr

LUT end address.

StartVal

LUT start value.

EndVal

LUT end value.

R2LutRamp BitFlow SDK

SDK-27-12 BitFlow, Inc. Version G.8

Returns

Comments LUT definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_NO_BIG_LUTS Road Runner/R3 board doesn't support 16-bit LUTs.

R2_BAD_BANK Illegal LUT bank.

R2_BAD_LUT_ADDR Illegal LUT address.

R2_LUT_RAMP_ERR LUT ramp failed.

Road Runner/R3 LUTS R2LutMax

Version G.8 BitFlow, Inc. SDK-27-13

27.8 R2LutMax

Prototype R2RC R2LutMax(RdRn Board, LutModePtr LutSizePtr)

Description Gets the maximum LUT size.

Parameters Board

Road Runner/R3 board ID.

LutSizePtr

Pointer to LUT size storage.

Returns

Comments This function gets the minimum LUT size.

R2_OK Function succeeded.

R2LutMax BitFlow SDK

SDK-27-14 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-28-1

Road Runner/R3 Mid-Level Control
Functions

Chapter 28

28.1 Introduction

These functions are used to control the board at a lower level than the R2AqCommand
function. In general, an application should not need to use these functions unless special
circumstances exist. These functions talk directly to the hardware and make no assump-
tions about how the rest of the board is set up. Generally, it is a bad idea to mix high-level
functions and these mid-level functions.

R2ConAqCommand BitFlow SDK

SDK-28-2 BitFlow, Inc. Version G.8

28.2 R2ConAqCommand

Prototype R2RC R2ConAqCommand(RdRn Board, BFU32 Command)

Description Sends an acquisition command to the board.

Parameters Board

Handle to board.

Command

Command send to board:

R2ConSnap - snap one frame.
R2ConGrab - start continuous acquisition.
R2ConFreeze - stop continuous acquisition at the end of the current frame.
R2ConAbort - stop acquisition immediately.

Returns

Comments This function sends an acquisition command directly to the hardware. This is a low-
level function and makes no assumptions about the state of the rest of the board.

This command returns immediately.

R2_OK If successful.

R2_BAD_CON_PARAM Unknown Command parameter.

Road Runner/R3 Mid-Level Control Functions R2ConAqStatus

Version G.8 BitFlow, Inc. SDK-28-3

28.3 R2ConAqStatus

Prototype R2RC R2ConAqStatus(RdRn Board, PBFU32 pStatus)

Description Gets the current acquisition state of the board.

Parameters Board

Handle to board.

pStatus

Pointer to BFU32. When this function returns it contains the status of the board. The
status will be one of the following:

R2ConFreeze - the board is not acquiring.
R2ConSnap - the board is currently acquiring one frame.
R2ConGrab - the board is currently in continuous acquisition mode.

Returns

Comments This function returns the current acquisition status of the board.

R2_OK If successful.

R2ConAqMode BitFlow SDK

SDK-28-4 BitFlow, Inc. Version G.8

28.4 R2ConAqMode

Prototype R2RC R2ConAqMode(RdRn Board, BFU32 DestType)

Description For a given destination type, this function sets the board’s acquisition MUX registers,
based on the current camera type.

Parameters Board

Handle to board.

DestType

Type of acquisition to prepare for:

R2DMABitmap - the destination buffer to be used for display.
R2DMADataMem - the destination buffer needs to contain raw data.

Returns

Comments This function sets up the Road Runner/R3’s front end acquisition paths for acquiring to
a display buffer or a raw data buffer. A display buffer is one that will be used for dis-
play on a monitor, and is 8 bits deep. A raw data buffer is one that the data has the
same bit depth as the camera. The function sets up the MUX[A,B,C,D] registers as well
as the TRIGAQWIDTH register. This function does not alter the state of the LUTs or
QTABs.

This function has no effect for 8-bit cameras.

This function is normally called automatically by R2AqSetup, and does not need to be
called explicitly by an application. An unpredictable result will occur if this function is
called while the board is acquiring.

R2_OK If successful.

R2_BAD_CON_PARAM Unknown DestType parameter.

Road Runner/R3 Mid-Level Control Functions R2ConInt

Version G.8 BitFlow, Inc. SDK-28-5

28.5 R2ConInt

Prototype R2RC R2ConInt(RdRn Board, BFU32 IntType, BFU32 Action)

Description Disables or enables individual hardware interrupts.

Parameters Board

Handle to board.

IntType

Type of interrupt:

R2IntTypeHW - hardware exception.
R2IntTypeFIFO - video FIFO overflow.
R2IntTypeDMADone - Non chaining DMA operation complete.
R2IntTypeEOD - End of DMA for current frame. Occurs when the last pixel

has been DMAed into memory. Users will create this signal ninety per-
cent of the time.

R2IntTypeCTab - interrupt bit in VCTAB is set.

Action

Indicates whether to enable or disable the interrupt:

R2ConEnable - enable the interrupt.
R2ConDisable - disable the interrupt.

Returns

Comments This function enables or disables the specified hardware interrupt for being invoked
on the PCI bus. The driver always has an interrupt service (ISR) routine ready to han-
dle any interrupts that come in. The driver’s ISR will automatically reset the appropri-
ate interrupt bits on the board when an interrupt occurs.

To receive notification of interrupts at the user application level, use the signaling sys-
tem (see the R2SignalXXXX functions). These functions automatically enable the
appropriate interrupt when the signal is created, so you do not have to call this func-
tion to use an interrupt with the signaling system. However, you can use this function
to enable and disable interrupts, based on your application needs, without creating
and destroying signals. As a general rule, you should disable any interrupts that you
are not using. Every interrupt uses a certain amount of CPU time, even if no applica-
tion is waiting for it.

When the board is initialized, by default, all interrupts are turned off.

R2_OK If successful.

R2_BAD_CON_PARAM Either the parameter IntType or Action is unknown.

R2ConDMACommand BitFlow SDK

SDK-28-6 BitFlow, Inc. Version G.8

28.6 R2ConDMACommand

Prototype R2RC R2ConDMACommand(RdRn Board, BFU32 Command, BFU32 Mode, BFU8
Bank)

Description Issues a DMA command to the board.

Parameters Board

Handle to board.

Command

DMA command to issue:

R2ConDMAGo - start the DMA engine.
R2ConDMAAbort - immediately abort the current DMA operation.
R2ConDMAReset - reset the DMA engine.

Mode

Behavior of this function once the command is issued:

R2ConWait - wait for current command to be implemented.
R2ConAsync - return as soon as command is issued.

Bank

This parameter is the QTab bank to use for the next DMA operation. Must be 0 or 1.
This parameter is ignored if the board is in Host QTab mode.

Returns

Comments This function sends a DMA command to the board. If the Command = R2ConD-
MAGo, this will tell the board to start DMAing. No data will actually be moved until an
acquisition command has been issued. The best way to use the Road Runner/R3’s
DMA engine is to start the DMA and leave it on all the time. Then, control the time
when data gets moved to the host by using the acquisition commands.

The command R2ConDMAAbort will stop DMA immediately. This is actually a faster
way to stop moving data than aborting acquisition. If acquisition is aborted the board
will still DMA until the FIFO is empty. If DMA is aborted, the board will be in an

R2_OK If successful.

R2_AQ_NOT_SETUP R2AqSetup has not yet been called and the board is
not ready for an acquisition command.

R2_BAD_CON_PARAM Unknown command.

R2_TIMEOUT Timeout waiting for command to complete. This is
only possible if Mode = R2ConWait.

Road Runner/R3 Mid-Level Control Functions R2ConDMACommand

Version G.8 BitFlow, Inc. SDK-28-7

unknown state. Call this function again with Command = R2ConDMAReset, to get
the board ready for DMA again. Finally, call this function with Command = R2ConD-
MAGo, when ready to start DMAing again.

This function is automatically called by R2AqSetup, and does not normally need to be
called by the applications.

If this function is called with Mode = R2ConWait, the function will not return until the
command has been implemented. Table 28-1 lists what the function will wait for.

When Mode = R2ConWait, this function does not efficiently wait, it polls the DMA
registers for completion. This is necessary since none of the above conditions causes
an interrupt. If the command has not completed before the DMA timeout has expired,
the function will return with a timeout error. This DMA timeout is set using the SysReg
utility, or with the function R2DMATimeout.

Table 28-1 Function Waiting

Command Waits for…

R2ConDMAGo DMA engine to get ready for DMA (this is a negligi-
ble amount of time).

R2ConDMAAbort DMA engine to abort current transfer.

R2ConDMAReset Does not wait.

R2DMATimeout BitFlow SDK

SDK-28-8 BitFlow, Inc. Version G.8

28.7 R2DMATimeout

Prototype R2RC R2DMATimeout(RdRn Board, BFU32 Timeout)

Description Sets the DMA timeout value for the given board.

Parameters Board

Handle to board.

Timeout

Number of milliseconds that must elapse before DMA operations time out.

Returns

Comments The DMA timeout is the number of milliseconds DMA operations will wait for a DMA
command to complete. If more than this number of milliseconds have expired before
the current DMA command has completed, then an error is set and the function will
return with a timeout error.

Normally this value is the same for every board. The default value is set in the SysReg
utility. However, this function can set the timeout to some other value for a given
board. The function will only effect the timeout for the given Road Runner/R3.

The timeout value does not affect normal DMA of data into the host. Once the Road
Runner/R3 is set up, the DMA is usually given the GO command. No actual data will
move until an acquisition command is issued and the camera sends data to the board.
The DMA timeout does not cover the interval between when the DMA engine is told
to GO and before camera data has come in. This time can be covered by the acquisi-
tion time out value set in the camera configuration file. The DMA timeout covers the
time between when a DMA command is issued and when the command has com-
pleted.

For example, when the DMA engine is told to go, the engine must report that it is
going before the timeout has expired or a timeout error will result. This timeout is
most useful for aborting or ending DMA. If the board is not programmed correctly or
there is a camera problem, it is possible the DMA engine will never finish or abort. It
is important to catch these conditions and raise an error.

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2DMAProgress

Version G.8 BitFlow, Inc. SDK-28-9

28.8 R2DMAProgress

Prototype R2RC R2DMAProgress(RdRn Board, PQTABHEAD pRelQTabHead, PBFU32 pByte-
sAqed)

Description Returns the instantaneous number of bytes that have been DMAed so far in the cur-
rent image.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to QTABHEAD structure already filled out.

pBytesAqed

Pointer to BFU32. When the function returns it will contain the number of bytes that
have been DMAed.

Returns

Comments This function returns the number of bytes of the current image that have been DMAed
so far. The returned value is an instantaneous value that is accurate at the moment the
board was checked. Since DMA can occur very quickly, the returned value may not
be accurate for a very long. The value returned is also approximate, the granularity
depends on the number of bytes transferred per quad (individual DMA instruction),
which can vary from quad to quad. As a rule of thumb, this function usually is accurate
to plus or minus one line’s worth of bytes.

Calling this function in a loop is not a very efficient way to wait for a frame to be
acquired. Use the signaling system instead. This function can be used to check the
progress of the DMA and to find out how much new data is in the host memory.

R2_BAD_IOCTL Error writing physical QTab to board. Check error
stack for other errors.

R2LastLine BitFlow SDK

SDK-28-10 BitFlow, Inc. Version G.8

28.9 R2LastLine

Prototype R2RC R2LastLine(RdRn Board, PBFU32 pCurLine)

Description Returns the line number of the last line in the frame.

Parameters Board

Handle to board.

pCurLine

Pointer to the last line number.

Returns

Comments This functions returns the line number of the last line in the frame. The returned value
is actually the Vertical CTAB counter value for the last line. If the camera being used is
a line scan camers then this value will be equivalent to the line number. However, for
area scan camera the start of the vertical active region will have to be subtracted from
the returned value (usually the vertical active region starts at 0x1000).

This function is most useful when acquiring variable sized images and thus the frame
size is unknown. This function will return the value from the last frame up until the end
of the following frame. In other words, the value of the last line stays constant for the
entire duration of the next frame. Once the next frame ends, then the last line is the
value for that frame.

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2ShutDown

Version G.8 BitFlow, Inc. SDK-28-11

28.10 R2ShutDown

Prototype R2RC R2ShutDown(RdRn Board)

Description Aborts all DMA activity and acquisition on the board.

Parameters Board

Handle to board.

Returns

Comments This functions aborts all activity on the board. DMA is aborted. Acquisition is aborted.
The FIFOs are reset. The board stops what it is currently doing and gets it ready for
more acquisition. Normally this function does not need to be called.

R2_OK If successful.

R2_BAD_DMA0_STOP Timeout waiting for DMA engine 0 to abort.

R2_BAD_DMA1_STOP Timeout waiting for DMA engine 1 to abort.

R2_BAD_AQ_STOP Timeout waiting for acquisition to abort.

R2_BAD_FIFO_RESET Could not reset the FIFOs.

R2ConSwTrigStat BitFlow SDK

SDK-28-12 BitFlow, Inc. Version G.8

28.11 R2ConSwTrigStat

Prototype R2RC R2ConSwTrigStat(RdRn Board, BFU32 BFTrig, PBFU32 Status)

Description Returns the status of the software trigger.

Parameters Board

Handle to board.

BFTrig

The trigger to inquire about, can be one of the following:

BFTrigA - inquire about trigger A.
BFTrigB - inquire about trigger B.

Status

The status of the trigger can be one of the following:

BFTrigHigh - the software trigger was high.
BFTrigLow - the software trigger was low.

Returns

Comments This function returns the status of the software trigger at the moment that the function
is called

R2_OK If successful.

R2_BAD_CON_PARAM Invalid BFTrig was passed to the function.

Road Runner/R3 Mid-Level Control Functions R2ConHWTrigStat

Version G.8 BitFlow, Inc. SDK-28-13

28.12 R2ConHWTrigStat

Prototype R2RC R2ConHWTrigStat(RdRn Board, BFU32 BFTrig, PBFU32 Status)

Description Returns the status of the hardware trigger.

Parameters Board

Handle to board.

BFTrig

The trigger to inquire about, can be one of the following:

BFTrigA - inquire about trigger A.
BFTrigB - inquire about trigger B.

Status

The status of the trigger can be one of the following:

BFTrigHigh - the software trigger was high.
BFTrigLow - the software trigger was low.

Returns

Comments This function returns the status of the hardware trigger at the moment that the func-
tion is called

R2_OK If successful.

R2_BAD_CON_PARAM Invalid BFTrig was passed to the function.

R2ConFIFOReset BitFlow SDK

SDK-28-14 BitFlow, Inc. Version G.8

28.13 R2ConFIFOReset

Prototype R2RC R2ConFIFOReset(RdRn Board)

Description Resets the FIFO and FIFO freeze register on the board.

Parameters Board

Handle to board.

Returns

Comments

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2ConCtabReset

Version G.8 BitFlow, Inc. SDK-28-15

28.14 R2ConCtabReset

Prototype R2RC R2ConCtabReset(RdRn Board)

Description Resets the control tables on the board.

Parameters Board

Handle to board.

Returns

Comments

R2_OK In all cases.

R2ConVTrigModeSet BitFlow SDK

SDK-28-16 BitFlow, Inc. Version G.8

28.15 R2ConVTrigModeSet

Prototype R2RC R2ConVTrigModeSet(RdRn Board, BFU32 TrigMode, BFU32 TrigPolarity)

Description Sets the trigger mode and polarities on the board.

Parameters Board

Handle to board.

TrigMode

The trigger mode can be one of the following:

BFTrigFreeRun - no trigger is used, board free runs.
BFTrigAqCmd - triggered acquire command mode, non-resettable cam-

eras.
BFTrigAqCmdStartStop - start/stop triggered acquire mode, non-resetta-

ble cameras.
BFTrigOneShot - one shot mode, for asynchronously resettable cameras.
BFTrigOneShotSelfTriggered - self triggering one shot mode.
BFTrigContinuousData - for continuous data sources.
BFTrigOneShotStartAStopB - one shot mode, where acquisition starts with

the rising edge on trigger A and ends acquisition with the rising edge
of trigger B.

BFTrigOneShotStartAStopA - one shot mode, where acquisition starts with
the rising edge on trigger A and ends acquisition with the falling edge
of trigger A.

TrigPolarity

Polarity for trigger can be one of the following:

BFTrigAssertedHigh - TRIGGER is asserted on rising edge.
BFTrigAssertedLow - TRIGGER is asserted on falling edge.

Returns

Comments This function works in conjunction with the camera configuration files. It is important
to understand that not all cameras support all triggering modes. Usually a particular
camera will only support one or two triggering modes. Furthermore, a different cam-
era configuration file is usually needed for each triggering mode. For example, a cam-
era will almost always have a free running configuration file, useful for set up and
offline testing. A camera may also have a one shot file, which would be used in time-
critical applications. You cannot usually put the board, set up by the free running file,

R2_OK If successful.

R2_BAD_CON_PARAM One of the parameters is not valid.

Road Runner/R3 Mid-Level Control Functions R2ConVTrigModeSet

Version G.8 BitFlow, Inc. SDK-28-17

into one shot mode because the latter mode requires special triggering signals to be
sent to the camera. However, you can put the board, set up by a one shot file, into self
triggering one shot mode. This is useful for camera set up and system debugging.

The exception to the paragraph above is the triggered acquire command mode,
which will work with all cameras. This mode is really no different than just issuing an
acquisition command at a specific point in time in the future. When the board is in this
mode, an acquisition command is written by the host but not latched. Basically, the
board is armed but does not acquire any data. When the trigger is asserted the com-
mand latches. Once the command is latched, it acts as it normally does, that is, the
board starts acquiring data at the start of the next frame from the camera. The only
acquisition commands that are affected are snap and grab. The freeze and abort com-
mands work normally, and do not need a trigger to be latched. The disadvantage of
this mode is that it can add up to a frame time of latency to any trigger, because the
camera’s timing is not being reset.

All of the modes above, except the Start Stop trigger mode, work in conjunction with
acquisition commands. The acquisition command should always be issued before any
trigger. When the trigger does assert, the boards will be able to react immediately.
When the board is in any of the Start Stop modes, the acquisition commands are actu-
ally issued by the hardware automatically. When using this command, there is no
need to issue acquisition commands from the host.

If you want to find out what mode the board is in, call the function R2ConVTrigMode-
Get.

Note: This function only controls how the board is vertically triggered. Vertical triggers
cause the board to acquire a whole frame from an area camera or a number of lines
from a line scan camera.

Note: You must enable the connection of the external trigger with the function
R2ConExTrigConnect. The software triggers are always available.

R2ConVTrigModeGet BitFlow SDK

SDK-28-18 BitFlow, Inc. Version G.8

28.16 R2ConVTrigModeGet

Prototype R2RC R2ConVTrigModeGet(RdRn Board, PBFU32 TrigMode, PBFU32 TrigPolarity)

Description Gets the current trigger mode and polarities for the board.

Parameters Board

Handle to board.

TrigMode

Returns one of the following current trigger modes:

BFTrigFreeRun - no trigger is used, board free runs.
BFTrigAqCmd - triggered acquire command mode, non-resettable cam-

eras.
BFTrigAqCmdStartStop - start/stop triggered acquire mode, non-resetta-

ble cameras.
BFTrigOneShot - one shot mode, for asynchronously resettable cameras.
BFTrigOneShotSelfTriggered – self triggering one shot mode.
BFTrigContinuousData – for continuous data sources.
BFTrigOneShotStartAStopB – one shot mode, where acquisition starts with

the rising edge on trigger A and ends acquisition with the rising edge
of trigger B.

BFTrigOneShotStartAStopA – one shot mode, where acquisition starts with
the rising edge on trigger A and ends acquisition with the falling edge
of trigger A.

TrigPolarity

Returns one of the following polarities for the trigger:

BFTrigAssertedHigh - trigger is asserted on rising edge.
BFTrigAssertedLow - trigger is asserted on falling edge.

Returns

Comments This function returns the current state of the trigger circuitry for the board.

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2ConHTrigModeSet

Version G.8 BitFlow, Inc. SDK-28-19

28.17 R2ConHTrigModeSet

Prototype R2RC R2ConHTrigModeSet(RdRn Board, BFU32 EncMode, BFU32 EncPolarity,
BFU32 EncSelect)

Description Sets the horizontal trigger mode and polarities for the acquisition engine.

Parameters Board

Handle to board.

EncMode

The horizontal triggering mode:

BFEncFreeRun – no line trigger is used, board free runs.
BFEncOneShot – horizontal one shot mode, every line needs a line trigger.
BFEncOneShotSelfTriggered – self triggering one shot mode..

EncPolarity

Polarity for all line triggers:

BFEncAssertedHigh - line triggers are asserted on rising edge.
BFEncAssertedLow - line triggers are asserted on falling edge.

EncSelect

Type of encoder:

BFEncA - Encoder A is active and B is disabled on the R2 or R3.

Returns

Comments

R2_OK If successful.

R2_BAD_CON_PARAM One of the parameters is not valid or the particu-
lar combination of parameters is not possible.

R2ConHTrigModeGet BitFlow SDK

SDK-28-20 BitFlow, Inc. Version G.8

28.18 R2ConHTrigModeGet

Prototype R2RC R2ConHTrigModeGet(RdRn Board, PBFU32 EndMode, PBFU32 EncPolarity,
PBFU32 EncSelect)

Description Gets the current horizontal encoder mode and polarity of the encoder.

Parameters Board

Handle to board.

EncMode

Returns the current encoder mode:

BFEncFreeRun – no line trigger is used, board free runs.
BFEncOneShot – horizontal one shot mode, every line needs a line trigger.

EncPolarity

Returns the current polarity for the encoder:

BFEncAssertedHigh - trigger A is asserted on rising edge.
BFEncAssertedLow - trigger A is asserted on falling edge.

EncSelect

Returns the encoder input type:

BFEncA - Encoder A is active and B is disabled on the R2 or R3.
BFEncUnknown - Could not determine the encoder input type.

Returns

Comments

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2ConExTrigConnect

Version G.8 BitFlow, Inc. SDK-28-21

28.19 R2ConExTrigConnect

Prototype R2RC R2ConExTrigConnect(RdRn Board, BFU32 Mode)

Description Connects or disconnect the external hardware trigger to the acquisition circuitry.

Parameters Board

Handle to board.

Mode

Status of connection:

BFExTrigConnect - connect the trigger.
BFExTrigDisconnect - disconnect the trigger.

Returns

Comments This function connects the external hardware trigger to the acquisition circuitry. This
function lets you turn on or off the effect of external triggers without altering other set-
tings on the board, as well as whatever machinery is driving the trigger signal.

R2_OK If successful.

R2_BAD_CON_PARAM The Mode parameter is not valid.

R2ConExTrigStatus BitFlow SDK

SDK-28-22 BitFlow, Inc. Version G.8

28.20 R2ConExTrigStatus

Prototype R2RC R2ConExTrigStatus(RdRn Board, PBFU32 Mode)

Description Returns the status of the hardware trigger to the acquisition circuitry.

Parameters Board

Handle to board.

Mode

Returns the status of connection:

BFExTrigConnect - connect the trigger.
BFExTrigDisconnect - disconnect the trigger.

Returns

Comments This function returns the status of the connection between the external hardware trig-
ger and the acquisition circuitry.

R2_OK In all cases.

Road Runner/R3 Mid-Level Control Functions R2ConGPOutSet

Version G.8 BitFlow, Inc. SDK-28-23

28.21 R2ConGPOutSet

Prototype R2RC R2ConGPOutSet(RdRn Board, BFU32 Mask, BFU32 Value)

Description Sets the bits on the General Purpose Output registers.

Parameters Board

Handle to board.

Mask

Type of GPOut (GPOuts may be or’ed together - BFGPOut0|BFGPOut1):

BFGPOut0 - Set the the value of GPOut0.
BFGPOut1 - Set the the value of GPOut1.
BFGPOut2 - Set the the value of GPOut2.
BFGPOut3 - Set the the value of GPOut3.
BFGPOut4 - Set the the value of GPOut4.
BFGPOut5 - Set the the value of GPOut5.

Value

The value to set the bit(s) too. The value can be either a 0 or 1.

Returns

Comments The Camera Link and PMC boards only have three general purpose outputs, BFG-
POut0, BFGPOut1, and BFGPOut2. All other R2/R3 boards use all general purpose
outputs.

R2_OK If successful.

R2_BAD_CON_PARAM Value was not a 0 or a 1.

R2_BAD_GPOUT A invalid Mask value was passed into the function.

R2_CON_GPOUT_BAD The setting of the register value failed.

R2ConGPOutGet BitFlow SDK

SDK-28-24 BitFlow, Inc. Version G.8

28.22 R2ConGPOutGet

Prototype R2RC R2ConGPOutGet(RdRn Board, PBFU32 Value)

Description Returns the value of the all the general purpose output bits.

Parameters Board

Handle to board.

Value

A pointer to the value of the GPOut bits.

Returns

Comments The Camera Link and PMC boards only have three general purpose outputs, BFG-
POut0, BFGPOut1, and BFGPOut2. This function returns the values for all the GPOuts
on the board.

Each digit in Value represents a GPOut, GPOut0 being the right most digit. For exam-
ple, if Value has a value of 0x0000003e all the GPOuts have a value of 1 except
GPOut0 which has a value of 0.

R2_OK In all cases.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-29-1

Road Runner/R3 Data Control Functions

Chapter 29

29.1 Introduction

These functions control how the Road Runner/R3 interfaces to the camera. In general, the
registers on the board are set up with the camera configuration file, and these functions
need not be called. However, if an application needs to make minor changes to the
boards setup, it is often easier to call these functions than to switch between camera
modes.

These functions are essentially wrappers around register reads and writes. Some users
may find it easier to write directly to the registers as it more closely imitates modifying the
camera configuration files.

R2ConQTabBank BitFlow SDK

SDK-29-2 BitFlow, Inc. Version G.8

29.2 R2ConQTabBank

Prototype R2RC R2ConQTabBank(RdRn Board, BFU8 Bank)

Description Selects the QTab bank for the next transfer.

Parameters Board

Road Runner/R3 board ID.

Bank

Bank number:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Returns

Comments QTab bank selections are declared in R2TabRegister.h.

The indicated bank is activated when the host writes the DMA GO bit or when a new
QTab sequence is initiated by an R2_DMA_QUAD_LOCAL_EOX (end-of-sequence)
bit at the end of an in-progress QTab driven DMA transfer.

Register REG DBANK is the only register that may be modified by this function.

R2_OK Function succeeded.

R2_BAD_BANK Illegal bank number.

R2_CON_QTAB_BANK_
ERR

Bank switch failed.

Road Runner/R3 Data Control Functions R2ConFreq

Version G.8 BitFlow, Inc. SDK-29-3

29.3 R2ConFreq

Prototype R2RC R2ConFreq(RdRn Board, BFU8 Freq)

Description Sets the Road Runner/R3 internal clock generator frequency.

Parameters Board

Road Runner/R3 board ID.

Freq

Internal clock frequency:

R2Freq000 - set to 0.0 MHz
R2Freq025 - set to 2.5 MHz
R2Freq050 - set to 5.0 MHz
R2Freq075 - set to 7.5 MHz
R2Freq100 - set to 10.0 MHz
R2Freq150 - set to 15.0 MHz
R2Freq200 - set to 20.0 MHz
R2Freq300 - set to 30.0 MHz

Returns

Comments Road Runner/R3 clock frequencies are declared in R2TabRegister.h.

R2ConFreq only sets the internal clock frequency. To enable the internal clock, regis-
ter REG_CLKCON must be set to R2ClockInternal.

This clock does not affect board operation, it is only provided for cameras that need
an external master clock.

Register REG_CFREQ is the only register that may be modified by this function.

R2_OK Function succeeded.

R2_BAD_FREQ Illegal clock frequency.

R2_CON_FREQ_ERR Frequency switch failed.

R2ConGPOut BitFlow SDK

SDK-29-4 BitFlow, Inc. Version G.8

29.4 R2ConGPOut

Prototype R2RC R2ConGPOut(RdRn Board, BFU8 Value)

Description Sets Road Runner/R3 GPOUT pins.

Parameters Board

Road Runner/R3 board ID.

Value

One or more output pins ORed together:

R2GPOut0 - general output pin 0
R2GPOut1 - general output pin 1
R2GPOut2 - general output pin 2
R2GPOut3 - general output pin 3 (CL only)
R2GPOut4 - general output pin 4 (CL only)
R2GPOut5 - general output pin 5 (CL only)

Returns

Comments The way this function works is if the GPOut is defined as a Value, it will be set high.
The GPOuts that are not defined as a Value will be set low. Here is an example with an
R2:

R2ConGPOut(Board, R2GPOut0|R2GPOut1);

With the above function call, GPOut 0 and 1 will be set to a 1 (high) and GPOut2 will
be set to a 0 (low).

General output pin bit masks are declared in R2TabRegister.h.

R2ConGPOut enables the signal outputs for all the general purpose output pins.

Registers REG_ENGPOUT0, REG_ENGPOUT1, REG_ENGPOUT2, REG_GPOUT0,
REG_GPOUT1 and REG_GPOUT2 may be modified by this function.

R2_OK Function succeeded.

R2_BAD_GPOUT Illegal general purpose output pin number.

R2_CON_GPOUT_ERR Output pin set failed.

Road Runner/R3 Data Control Functions R2ConSwTrig

Version G.8 BitFlow, Inc. SDK-29-5

29.5 R2ConSwTrig

Prototype R2RC R2ConSwTrig(RdRn Board, BFU32 Triggers, BFU32 AssertType)

Description Trips software trigger.

Parameters Board

Road Runner/R3 board ID.

Triggers

One or more triggers ORed together:

R2TrigA - trip TRIGGERA
R2TrigB - trip TRIGGERB

AssertType

Type of trigger to cause:

R2TrigAssert - asserts the trigger
R2TrigDeassert - de-asserts the trigger

Returns

Comments Software trigger bit masks are declared in R2TabRegister.h.

Registers REG_SWTRIGA and REG_SWTRIGB may be modified by this function.

R2_OK Function succeeded.

R2_BAD_SW_TRIG Illegal software trigger.

R2_CON_SW_TRIG_ERR Software trigger failed.

R2ConTrigAqCmd BitFlow SDK

SDK-29-6 BitFlow, Inc. Version G.8

29.6 R2ConTrigAqCmd

Prototype R2RC R2ConTrigAqCmd(RdRn Board, BFU8 Mode)

Description Sets acquisition trigger mode.

Parameters Board

Road Runner/R3 board ID.

Mode

Trigger mode:

R2TrigAqCmdOn - enable acquire command triggering.
R2TrigAqCmdOff - disable acquire command triggering.

Returns

Comments Trigger modes are declared in R2TabRegister.h.

If R2ConTrigAqCmd is set to R2TrigAqCmdOn, R2ConTrigSel should be set to R2Tri-
gRisingA.

Register REG_TRIGAQCMD may be modified by this function.

R2_OK Function succeeded.

R2_BAD_TRIGAQ Illegal trigger mode.

R2_CON_TRIG_AQ_ERR Trigger mode set failed.

Road Runner/R3 Data Control Functions R2ConTrigSel

Version G.8 BitFlow, Inc. SDK-29-7

29.7 R2ConTrigSel

Prototype R2RC R2ConTrigSel(RdRn Board, BFU8 Mode)

Description Selects acquisition trigger method.

Parameters Board

Road Runner/R3 board ID.

Mode

Trigger control method:

R2TrigRisingA - trigger on rising edge of TRIGGERA.
R2TrigFallingA - trigger on falling edge of TRIGGERB.
R2TrigRisingAToB - start on rising edge of A, stop on rising edge of B.
R2TrigFallingAToB - start on falling edge of A, stop on falling edge of B.
R2TrigContinuous - continuously acquire data as long as TRIGGERA is as-

serted High.

Returns

Comments Trigger methods are declared in R2TabRegister.h.

Registers REG_TRIGCON and REG_TRIGPOL may be modified by this function.

R2_OK Function succeeded.

R2_BAD_TRIG_SEL Illegal trigger method.

R2_CON_TRIG_SEL_ERR Trigger method selection failed.

R2ConVMode BitFlow SDK

SDK-29-8 BitFlow, Inc. Version G.8

29.8 R2ConVMode

Prototype R2RC R2ConVMode(RdRn Board, BFU8 Mode)

Description Sets vertical control mode.

Parameters Board

Road Runner/R3 board ID.

Mode

Vertical control mode:

R2FreeRun - allows the vertical counter to run free.
R2OneShot - after the vertical counter is reset, waits for a trigger.

Returns

Comments Vertical control modes are declared in R2TabRegister.h.

Register REG_VSTOP may be modified by this function.

R2_OK Function succeeded.

R2_BAD_VSTOP Illegal vertical control mode.

R2_CON_VMODE_ERR Vertical control mode set error.

Road Runner/R3 Data Control Functions R2ConHMode

Version G.8 BitFlow, Inc. SDK-29-9

29.9 R2ConHMode

Prototype R2RC R2ConHMode(RdRn Board, BFU8 Mode)

Description Sets horizontal control mode.

Parameters Board

Road Runner/R3 board ID.

Mode

Horizontal control mode:

R2FreeRun - allows the horizontal counter to run free.
R2OneShot - after the horizontal counter is reset, wait for an encoder.

Returns

Comments Horizontal control modes are declared in R2TabRegister.h.

Register REG_HSTOP may be modified by this function.

R2_OK Function succeeded.

R2_BAD_HSTOP Illegal horizontal control mode.

R2_CON_HMODE_ERR Horizontal control mode set error.

R2ConTapMirror BitFlow SDK

SDK-29-10 BitFlow, Inc. Version G.8

29.10 R2ConTapMirror

Prototype R2RC R2ConTapMirror(RdRn Board, BFU8 Mode)

Description Enables/disables scan reverse for taps 1 and 3.

Parameters Board

Road Runner/R3 board ID.

Mode

Mirror mode:

R2MirrorOn - enable scan reverse of taps 1 and 3.
R2MirrorOff - disable scan reverse of taps 1 and 3.

Returns

Comments Tap mirror modes are declared in R2TabRegister.h.

Register REG_STRAIGHT may be modified by this function.

R2_OK Function succeeded.

R2_CON_MIRROR_MODE Illegal mirror mode.

R2_CON_MIRROR_ERR Tap mirror mode set error.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-30-1

Road Runner/R3 Quad Table Functions

Chapter 30

30.1 Introduction

For almost all Road Runner/R3 applications there will be no need to call any of the func-
tions in this chapter. These are considered mid-level functions and are generally only
called indirectly by other, high level, functions. These functions are listed here in case
some specialized programming of the Road Runner/R3 is required.

Quad Tables (or QTABS) are simple scatter gather DMA tables. A scatter gather DMA
table is a list of instructions that tell the Road Runner/R3 how to DMA images to host. The
name quad comes from the fact that each DMA instruction consists of four, 32-bit words:
DMA source, DMA destination, DMA size, and a pointer to the next DMA instruction.

There are two types of QTABs: relative and physical. These differ only by the kind of mem-
ory the DMA destination describes. Relative QTABs describe relative or virtual memory
address, which is typically all that your application sees.

Physical QTABs describe actual physical locations of memory. A relative QTab is created
based on the current camera and the memory pointer that is handed to the create func-
tion. The physical QTab is built from this at the kernel level by locking down the virtual
memory and calculating the physical addresses of this memory.

R2RelQTabCreate BitFlow SDK

SDK-30-2 BitFlow, Inc. Version G.8

30.2 R2RelQTabCreate

Prototype R2RC R2RelQTabCreate(RdRn Board, PR2CAM pCam, PBFVOID pDest, BFU32 Buf-
ferSize, BFS32 Stride, PQTABHEAD pRelQTabHead, BFU32 DestType, BFU32 Lut-
Bank, BFU32 LutType, BFU32 Options)

Description Builds a relative QTab, used for acquisition from a given camera type to a host mem-
ory buffer. The relative QTab can then be converted to a physical QTab, which can be
written to the board.

Parameters Board

Handle to board.

pCam

Camera object of the type to build the QTab for.

pDest

A void pointer to the destination buffer.

BufferSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in pixels, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

pRelQTabHead

Pointer to an allocated QTABHEAD structure.

DestType

Type of destination memory:

R2DMADataMem - host memory
R2DMABitmap - display memory

LutBank

The LUT bank to pass the image through:

R2LutBank0 - LUT bank 0

Road Runner/R3 Quad Table Functions R2RelQTabCreate

Version G.8 BitFlow, Inc. SDK-30-3

R2LutBank1 - LUT bank 1
R2LutBypass - bypass LUTs

LutType

The mode of the LUT to use:

R2Lut8Bit - LUTs are programmed as 8 bits
R2Lut12Bit - LUTs are programmed as 12 bits
R2Lut16Bit - board has 16-bit LUTs (only on boards with 16-bit LUTs)

Options

Extra option for the last quad. Can be one or more of:

R2_DMA_OPT_INT - set interrupt bit in last quad.
R2_DMA_OPT_EOC - set EOC bit in last quad.

Returns

Comments This function builds a relative QTab for acquisition of a given camera type into a host
memory buffer. The QTab is a table of scatter-gather DMA instructions that the Road
Runner/R3 uses to continuously (and without host intervention) DMA camera data to
the host memory. The relative QTab is the version of this table that is built with virtual
addresses. These virtual addresses point to the destination buffer as addressed in the
application’s address space. The relative QTab must be passed to R2PhysQTabCreate
to build a physical QTab. The physical QTab is the same as the relative QTab except
that it contains physical addresses that can be used by the board as actual DMA desti-
nations. The physical QTab is stored in the kernel and can be quickly copied to the
board.

This is a mid-level function and should not be called except for custom programming
of the Road Runner/R3. The high-level function R2AqSetup will call this function for
you.

R2_OK If successful.

R2_BAD_CNF Error extracting information from the camera object.

R2_BAD_MODEL The camera configuration contains a QTab model or
format that is not understood by this version of the
SDK. Or, the camera configuration is such that the
relative QTab cannot be built.

R2_BAD_CON_PARAM The LutBank, LutType, or DestType parameter is
incorrect.

R2_BAD_ALLOC Cannot allocate enough memory to build relative
QTab.

R2RelQTabCreate BitFlow SDK

SDK-30-4 BitFlow, Inc. Version G.8

Depending on the camera, this function may take a moderate amount of time to cal-
culate the relative QTab. This function should only be called once, for a given camera
and destination. The relative QTab can be used repeatedly to acquire from the same
camera type into the same memory buffer.

This function allocates memory to hold the relative QTab in the users address space.
Call R2RelQTabFree to release this and other resources allocated in this function.

Road Runner/R3 Quad Table Functions R2RelQTabCreateRoi

Version G.8 BitFlow, Inc. SDK-30-5

30.3 R2RelQTabCreateRoi

Prototype R2RC R2RelQTabCreateRoi(RdRn Board, PR2CAM pCam, PBFVOID pDest, BFU32
BufferSize, BFS32 Stride, PQTABHEAD pRelQTabHead, BFU32 DestType, BFU32
LutBank, BFU32 LutType, BFU32 Options, BFU32 DestX, BFU32 DestY, BFU32
DestDx, BFU32 DestDy)

Description Builds a relative QTab, used for acquisition from a given camera type to a Region Of
Interest (ROI) in a host memory buffer. The relative QTab can then be converted to a
physical QTab, which can be written to the board.

Parameters Board

Handle to board.

pCam

Camera object of the type to build the QTab for.

pDest

A void pointer to the destination buffer.

BufferSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in pixels, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

pRelQTabHead

Pointer to an allocated QTABHEAD structure.

DestType

Type of destination memory:

R2DMADataMem - host memory
R2DMABitmap - display memory

LutBank

The LUT bank to pass the image through:

R2RelQTabCreateRoi BitFlow SDK

SDK-30-6 BitFlow, Inc. Version G.8

R2LutBank0 - LUT bank 0
R2LutBank1 - LUT bank 1
R2LutBypass - bypass LUTs

LutType

The mode of the LUT to use:

R2Lut8Bit - LUTs are programmed as 8 bits
R2Lut12Bit - LUTs are programmed as 12 bits
R2Lut16Bit - board has 16-bit LUTs (only on boards with 16-bit LUTs)

Options

Extra option for the last quad. Can be one or more of:

R2DMAOptInt - set interrupt bit in last quad.
R2DMAOptEOC - set EOC bit in last quad.

DestX

The X coordinate of the upper left hand pixel of the destination ROI.

DestY

The Y coordinate of the upper left hand pixel of the destination ROI.

DestDx

The width of the destination ROI in pixels.

DestDy

The height of the destination ROI in Pixels.

Returns

R2_OK If successful.

R2_BAD_CNF Error extracting information from the camera object.

R2_BAD_MODEL The camera configuration contains a QTab model or
format that is not understood by this version of the
SDK. Or, the camera configuration is such that the
relative QTab cannot be built.

R2_BAD_CON_PARAM The LutBank, LutType, or DestType parameter is
incorrect.

R2_BAD_ALLOC Cannot allocate enough memory to build relative
QTab.

Road Runner/R3 Quad Table Functions R2RelQTabCreateRoi

Version G.8 BitFlow, Inc. SDK-30-7

Comments This function builds a relative QTab for acquisition of a given camera type into a
Region of Interest (ROI) host memory buffer. The QTab is a table of scatter-gather
DMA instructions that the Road Runner/R3 uses to continuously (and without host
intervention) DMA camera data to the host memory. The relative QTab is the version
of this table that is built with virtual addresses. These virtual addresses point to the
destination buffer as addressed in the application’s address space. The relative QTab
must be passed to R2PhysQTabCreate to build a physical QTab. The physical QTab is
the same as the relative QTab except that it contains physical addresses that can be
used by the board as actual DMA destinations. The physical QTab is stored in the ker-
nel and can be quickly copied to the board.

All the pixels of the source image are DMAed. Pixels that fall out of the destination
ROI are DMAed to “garbage can” buffer on the host. This garbage can is allocated by
the kernel driver and not extra code is required to use this buffer. The parameter
DestX must be on a 4 pixel boundary. This width of the ROI, DestDx, must be a multi-
ple of 4 pixels.

This is a mid-level function and should not be called except for custom programming
of the Road Runner/R3. The high-level function R2AqSetup will call this function for
you.

Depending on the camera, this function may take a moderate amount of time to cal-
culate the relative QTab. This function should only be called once, for a given camera
and destination. The relative QTab can be used repeatedly to acquire from the same
camera type into the same memory buffer.

This function allocates memory to hold the relative QTab in the users address space.
Call R2RelQTabFree to release this and other resources allocated in this function.

R2RelQTabFree BitFlow SDK

SDK-30-8 BitFlow, Inc. Version G.8

30.4 R2RelQTabFree

Prototype R2RC R2RelQTabFree(RdRn Board, PQTABHEAD pRelQTabHead)

Description Frees resources allocated in R2RelQTabCreate.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to QTABHEAD structure previously passed to R2RelQtabCreate.

Returns

Comments This function releases the memory used to hold the relative QTab and any other
resources allocated in R2RelQTabCreate.

R2_OK In all cases.

Road Runner/R3 Quad Table Functions R2PhysQTabCreate

Version G.8 BitFlow, Inc. SDK-30-9

30.5 R2PhysQTabCreate

Prototype R2RC R2PhysQTabCreate(RdRn Board, PQTABHEAD pRelQTabHead)

Description Builds a physical QTab that backs a relative QTab that describes a destination buffer in
host memory for a given camera type.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure that has been filled out in R2ReQtabCreate.

Returns

Comments This function takes a relative QTab created in R2RelQTabCreate and builds a physical
QTab (storage is allocated in this function). The physical QTab contains actual physical
addresses of the destination buffer in memory. The physical addresses can be used
by the Road Runner/R3 as DMA destinations. This function also locks the destination
buffer into memory (prevents the operating system from swapping the memory to
disk). The memory must be locked in order for the DMA request to be satisfied.

When this function returns, the QTABHEAD structure contains the handle to the newly
created physical QTab.

The resulting physical QTab is stored in the driver. It can be copied to the board using
R2PhysQTabWrite. Multiple physical QTABs can be built and live in the driver at the
same time, each with it’s own QTABHEAD structure. The physical QTab can be
released with a call to R2PhysQTabFree.

This is a mid-level function and should not be called except for custom programming
of the Road Runner/R3. The high-level function R2AqSetup will call this function for
you.

R2_OK If successful.

R2_BAD_IOCTL Error creating physical QTab. Check error stack for
other errors.

R2PhysQTabWrite BitFlow SDK

SDK-30-10 BitFlow, Inc. Version G.8

30.6 R2PhysQTabWrite

Prototype R2RC R2PhysQTabWrite(RdRn Board, PQTABHEAD pRelQTabHead, BFU32 Offset)

Description Writes a physical QTab to a board.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure, containing a valid physical QTab.

Offset

The entry number to start writing the physical QTab. This can be any value between 0
and 32768. However, this value is usually the location of the first bank, starting at 0, or
the second bank, starting at address 16384 (0x4000).

Returns

Comments This function takes an already created physical QTab and copies it into the board’s
DMA quad tables. These tables are used to tell the Road Runner/R3’s DMA engine
where, and how many pixels to DMA to host.

There are two QTab banks on the board. The two banks allow for ping-pong type
acquisition between two host buffers. Also, one bank can be currently used for DMA
while the next is being loaded for a subsequent destination buffer. The Road Runner/
R3 can switch banks, on-the-fly, when instructed to (see R2AqNextBankSet). The bank
switch will take place just after the board DMAs the last quad in the current bank (the
EOX of the last quad must be set, see R2RelQTabCreate). This function can also write
to any location in the quad tables.

This is a mid-level function and should not be called except for custom programming
of the Road Runner/R3. The high-level function R2AqSetup will call this function for
you.

R2_OK If successful.

R2_BAD_IOCTL Error creating physical QTab. Check error stack for
other errors.

Road Runner/R3 Quad Table Functions R2PhysQTabEOC

Version G.8 BitFlow, Inc. SDK-30-11

30.7 R2PhysQTabEOC

Prototype R2RC R2PhysQTabEOC(RdRn Board, PQTABHEAD pRelQTabHead, BFU32 Set,
BFU32 Offset)

Description Sets or resets the EOC bit in the last quad of a physical QTab that is already written to
the board. This function is used to gracefully end continuous DMA at the end of a
frame.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure that contains a valid physical QTab.

Set

Whether to set the bit or not.

1 - set the EOC bit
0 - reset the EOC bit.

Offset

The entry number to start writing the physical QTab. This value must be either the
location of the start of the first bank, address = 0, or the second bank, at address
16384 (0x4000).

Returns

Comments The QTABs on a Road Runner/R3 can be set up for continuous DMAing to host. Every
image that is acquired is automatically sent to host, frame after frame, without host
intervention. This process is facilitated by reuse of the same physical QTab on the
board. QTABs can be built so that they loop back on themselves. With the QTab set
up this way, every frame that comes in is DMAed. Normally, this process is stopped by
stopping acquisition. However, the DMA can also be stopped. This function allows for
DMA to be stopped after the last pixel of the current image is DMAed to memory.

The Set parameter should = 1 to stop the DMA after the current frame is completed.
You can use the same QTab again, and in continuous mode, by calling this function
with Set = 0. This will allow the current QTab to be used in continuous fashion again.

R2_OK If successful.

R2_BAD_IOCTL Error creating physical QTab. Check error stack for
other errors.

R2PhysQTabEOC BitFlow SDK

SDK-30-12 BitFlow, Inc. Version G.8

This is a mid-level function and should not be called except for custom programming
of the Road Runner/R3. The high-level function R2AqSetup will call this function for
you.

This function actually sets or resets the EOC (End of Chain) bit in the last quad of the
current QTab.

Road Runner/R3 Quad Table Functions R2PhysQTabFree

Version G.8 BitFlow, Inc. SDK-30-13

30.8 R2PhysQTabFree

Prototype R2RC R2PhysQTabFree(RdRn Board, PQTABHEAD pRelQTabHead)

Description Frees the memory used to hold the physical QTab in the driver memory.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to a QTABHEAD structure that contains a valid physical QTab.

Returns

Comments This function frees the driver level resources used to hold a physical QTab.

R2_OK If successful.

R2_BAD_IOCTL Error writing physical QTab to board. Check error
stack for more error information.

R2RelDisplayQTabCreate BitFlow SDK

SDK-30-14 BitFlow, Inc. Version G.8

30.9 R2RelDisplayQTabCreate

Prototype R2RC R2RelDisplayQTabCreate(RdRn Board, PR2CAM pCam, PBFVOID pDest,
BFU32 BufferSize, BFS32 Stride, PQTABHEAD pRelQTabHead, BFU32 DestType,
BFU32 LutBank, BFU32 LutType, BFU32 Options, BFU32 SrcX, BFU32 SrcY, BFU32
SrcDX, BFU32 SrcDY, BFU32 DestX, BFU32 DestY)

Description Creates a relative QTab used to acquire into display memory (or other physical mem-
ory).

Parameters Board

Handle to board.

pCam

Pointer to camera structure.

pDest

Pointer to destination memory buffer.

BufferSize

Size of buffer in bytes.

Stride

Number of bytes to move down one line in destination (if 0, Stride = xsize * pixel size,
if < 0 fills bottom up).

pRelQTabHead

Pointer to QTab head structure.

DestType

Type of destination memory:

R2DMADataMem - host memory
R2DMABitmap - display memory

LutBank

The LUT bank to pass the image through:

R2LutBank0 - LUT bank 0
R2LutBank1 - LUT bank 1
R2LutBypass - bypass LUTs

Road Runner/R3 Quad Table Functions R2RelDisplayQTabCreate

Version G.8 BitFlow, Inc. SDK-30-15

LutType

The mode of the LUT to use:

R2Lut8Bit - LUTs are programmed as 8 bits
R2Lut12Bit - LUTs are programmed as 12 bits
R2Lut16Bit - board has 16-bit LUTs (only on boards with 16-bit LUTs)

Options

Extra option for the last quad. Can be one or more of:

R2DMAOptInt - set interrupt bit in last quad.
R2DMAOptEOC - set EOC bit in last quad.

SrcX

X coordinate of source ROI in pixels.

SrcY

Y coordinate of source ROI in pixels.

SrcDX

Width of source ROI in pixels (if 0 - use entire image, DestX must also be zero).

SrcDY

Height coordinate of source ROI in pixels (if 0 - use entire image, DestY must also be
zero).

DestX

X coordinate of destination ROI in pixels (screen coordinates).

DestY

Y coordinate of destination ROI in pixels (screen coordinates).

Returns

Comments This function takes information about source and destination ROIs (assumes the desti-
nation ROI is in the VGA, thus pDest points to the beginning of VGA memory and
stride is based on the current resolution) and builds a relative QTab (in host memory)

R2_OK If successful.

Non-zero On error.

R2RelDisplayQTabCreate BitFlow SDK

SDK-30-16 BitFlow, Inc. Version G.8

based on information for the camera structure. This function allocates memory to hold
the quads (free it with R2RelQTabFree()). The QTABHEAD, however, should already
be allocated.

The SrcX,SrcY,SrcDX,SrcDY indicate a region of interest (ROI) in the image to be trans-
ferred in terms of the camera coordinates (in pixels). DestX and DestY indicate where
in the VGA the ROI is going to land, this should also be in terms of pixels. Based on
these parameters and the pDest and Stride parameters, this function calculates the
virtual coordinates of the destination of the first pixel in the image (this may end up
being outside of the VGA memory image is bigger than the VGA). Then R2RelQTab-
CreateRoi() is called with these values. Pixels outside of the display window are
DMAed to the garbage buffer. This includes pixels that may end up being offscreen.

NOTE: Because of the Road Runner/R3 architecture, the pixels outside of the ROI
must still be DMAed off the board. This function DMAs these pixels to a garbage buf-
fer allocated in the driver. This means there is no saving of PCI bandwidth by moving
only a ROI to the host.

NOTE: SrcX, SrcY, SrcDX, SrcDY, DestX, and DestY must be expressed in terms of
pixels and must all be on four pixel boundaries. This function can also be used to
DMA to other devices where physical address of memory is known. For example, you
can use this function to DMA to memory on a card on the PCI bus. If the memory is
linear, set SrcX, SrcY, SrcDX, SrcDY, DestX, and DestY to zero.

Road Runner/R3 Quad Table Functions R2PhysQTabEngage

Version G.8 BitFlow, Inc. SDK-30-17

30.10 R2PhysQTabEngage

Prototype R2RC R2PhysQTabEngage(RdRn Board, PQTABHEAD pRelQTabHead)

Description Sets the board up to use the given QTab for the next DMA operation. This function
should be called for both host and board QTABs.

Parameters Board

Handle to board.

pRelQTabHead

A pointer to a Relative QTab head structure. This should be the QTab for the host
memory buffer that will acquired into when the next acquisition command occurs.

Returns

Comments This function engages the QTab pRelQTabHead so that the board will use this QTab
for subsequent DMA operations. This is a mid level function which is not need it the
high level functions (e.g. r2AqSetup) are being used to set up DMA.

This function is used when building QTABs using the R2RelQTabCreate functions. The
normal order of function calls is as follows

R2RelQTabCreate
R2PhysQTabCreate
R2PhysQtabWrite
R2PhysQTabEngage
R2ConDMACommand

This function should be called for both board and host QTABs. The function will set
the QTab up appropriately for whichever type of QTab is being used. This function
must be called before DMA is started.

R2_OK If successful.

BF_NULL_POINTER Invalid pRelQTabHead pointer.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has already
been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board

BF_QUAD_GOING Attempt to engage QTab when board is DMAing.

BF_BAD_CHAIN Attempting to select a frame number when there is
only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

R2PhysQTabChainLink BitFlow SDK

SDK-30-18 BitFlow, Inc. Version G.8

30.11 R2PhysQTabChainLink

Prototype R2RC R2PhysQTabChainLink(Bd Board, PPQTABHEAD ChainArray, BFU32 NumIn-
Chain)

Description Chains together a number of QTABs for sequential acquisition in host QTab mode.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which describe an set of buffers to be acquired into. The
buffers will be filled in the order that their QTABs appear in this array.

NumInChain

The total number of QTab headers in the QTab chain array.

Returns

Comments This function effectively sets the board up for continuous acquisition into a sequence
of host buffers. Each buffer in is DMAed into in turn, when the last buffer in the chain is
filled, the board will DMA the next frame into the first buffer. In other words the chain
describes a circular buffer.

The parameter ChainArray is an array of pointer to QTab headers. The QTab must
already be created by calling R2RelQTabCreate and R2PhysQTabCreate. After this
function returns successfully, the chain must be engaged by calling R2PhysQTAB-
ChainEngage function. The normal calling sequence for this function would be as fol-
lows:

loop for all buffers
R2RelQTabCreate

loop for all buffers
R2PhysQTabCreate

R2PhysQTabChainLink
R2PhysQTabChainEngage
R2ConDMACommand
R2ConAqCommand

R2_OK If successful.

BF_NULL_POINTER ChainArray is NULL.

BF_NOT_CHAIN NumInChain is not valid.

BF_BAD_CHAIN Error walking ChainArray.

Road Runner/R3 Quad Table Functions R2PhysQTabChainLink

Version G.8 BitFlow, Inc. SDK-30-19

In the scenario above, no data will move until an acquisition command is sent to the
board and the camera sends a frame to the board. Once data is flowing, the board
will fill each buffer as the data comes in. Once the last buffer in the chain is filled, the
board will continue starting with the first buffer. No host interaction is required for this
process to work. The board will send a signal every frame (assuming R2RelQTabCre-
ate was called with the R2DMAOptInt parameter) to tell your application when a
frame is complete (use R2SignalWait).

NOTE: This function will only work for boards that support QTABs on the host, and will
only work when board is in QTABs on the host mode.

R2PhysQTabChainBreak BitFlow SDK

SDK-30-20 BitFlow, Inc. Version G.8

30.12 R2PhysQTabChainBreak

Prototype R2RC R2PhysQTabChainBreak(RdRn Board, PPQTABHEAD ChainArray)

Description Release QTABs from a chain so that they can be reused to build a subsequent chain.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which has been already passed to R2PhysQTabChain-
Create.

Returns

Comments This function is used to release the QTABs that are used by a chain. When a chain is
built the QTABs that make it up are modified for use in the chain. If these QTABs need
to be used again, the chain must first be broken with this function. After this function is
called, the individual QTABs can be use to build another chain, presumable in a dif-
ferent order.

There is no need to call this function during cleanup if the individual QTABs are not
going to be used again.

R2_OK If successful.

BF_BAD_CHAIN Error walking ChainArray.

Road Runner/R3 Quad Table Functions R2PhysQTabChainEngage

Version G.8 BitFlow, Inc. SDK-30-21

30.13 R2PhysQTabChainEngage

Prototype R2RC R2PhysQTabChainEngage(RdRn Board, PPQTABHEAD ChainArray, BFU32
FrameNum)

Description Takes a successfully created chain and sets the board up to use it.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to CiPhysQTabChainCreate.

FrameNum

The buffer number of the first frame in the chain to be acquired into.

Returns

Comments After a chain is created using R2PhysQTabChainCreate, the chain must be engaged
using this function in order for the board to use it. Creating a chain is not a real time
operation and should be done off line. If more than one chain is required, they should
all be created first, then this function can be used to select which chain will be
acquired into first.

See R2PhysQTabChainCreate for more information.

R2_OK If successful.

BF_NULL_POINTER ChainArray is NULL.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has already
been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board

BF_QUAD_GOING Attempt to engage QTab when board is DMAing.

BF_BAD_CHAIN Attempting to select a frame number when there is
only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

R2PhysQTabChainProgress BitFlow SDK

SDK-30-22 BitFlow, Inc. Version G.8

30.14 R2PhysQTabChainProgress

Prototype R2RC R2PhysQTabChainProgress(RdRn Board, PPQTABHEAD ChainArray, PBFU32
pFrameNum, PBFU32 pLineNum)

Description Returns the line number and frame number of current image being DMAed.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to CiPhysQTabChainCreate.

pFrameNum

Pointer to receive the number of the current frame being DMAed into.

pLineNum

Pointer to receive the number of the current line being DMAed.

Returns

Comments This function is used to check the progress of acquisition while the board is acquiring
using a chain. The function will return both the line number and the frame number.
This function is fairly computationally intensive and should not be called in a tight
loop to monitor progress. This function is best used intermittently to check progress,
for example, it can be interleaved with processing.

The best way to overlap acquisition and processing is to create a signal that waits for
the quad done signal (end of frame interrupt). Once the signal is asserted, the CPU
can freely process the entire frame.

If you need to monitor the boards progress using a tight loop, read the VCOUNT reg-
ister. Reading a register uses much less CPU time. Even in this case, you should put a
sleep in your loop to not overwhelm the board with register reads (which take prece-
dence over DMAing). Again is it better to interleave processing and checking
VCOUNT.

R2_OK If successful.

BF_BAD_PTAB The chain is not valid.

Road Runner/R3 Quad Table Functions R2ChainSIPEnable

Version G.8 BitFlow, Inc. SDK-30-23

30.15 R2ChainSIPEnable

Prototype R2RC R2ChainSIPEnable(RdRn Board, PPQTABHEAD ChainArray)

Description Enables start-stop interrupt processing (SIP).

Parameters Board

Handle to board.

pRelQTabHead

Structure holding information about QTab.

Returns

Comments This function enables start-stop interrupt processing (SIP). This processing is used to
reset the DMA engine in a kernel interrupt service routine.

When the board is in start-stop mode, the DMA is terminated before the frame is
completely acquired. This termination leaves the DMA engine in an unknown state.
The DMA engine must be reset and setup for the next host buffer before the next
frame starts. Ordinarily this reset is performed by the application at the user level.
However, in the case of a multi threaded application, the reset thread may not be able
to reset the DMA engine before the beginning of the next frame (because of CPU
load and thread priorities). To solve this problem the BitFlow SDK implements a DMA
engine reset in the kernel level interrupt service routine. This code has higher priority
than any user level threads. The latency and execution time of the SIP reset is mini-
mized thus reducing the required minimum time between frames. This function turns
on this functionality.

SIP only works (and is only required) when the board is in start-stop triggering mode
(variable size image acquisition) and when a host QTab chain has been created and
engaged. This function must be called before acquisition has started but after the
QTab chain is created. This function enable the SIP resetting of the DMA engine, you
must call BFChainSIPDisable to turn the SIP off. This SIP is based on the CTAB inter-
rupt (vertical CTAB column IRQ) which must have an interrupt at location zero.

The example application Flow demonstrates usage of this function.

R2_OK If successful.

Non-zero On error.

R2ChainSIPDisable BitFlow SDK

SDK-30-24 BitFlow, Inc. Version G.8

30.16 R2ChainSIPDisable

Prototype BFRC R2ChainSIPDisable(Bd BoardId, PPQTABHEAD ChainArray)

Description Disables Start-Stop Interrupt Processing mode.

Parameters Board

Board ID.

pRelQTabHead

Structure holding information about QTab.

Returns

Comments See R2ChainSIPEnable for details.

BF_OK Function succeeded.

Non-zero Function failed.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-31-1

Road Runner/R3 Register Access

Chapter 31

31.1 Introduction

These functions allow an application to read and write directly to every bit on the Road
Runner/R3. The individual bit names and their functions are described in full detail in the
following section, the BitFlow Hardware Reference.

The most important functions here are R2RegPoke and R2RegPeek. The other functions
are for more esoteric uses that treat registers as generic objects. Generally, these latter
functions are not useful in customer applications.

R2RegPeek BitFlow SDK

SDK-31-2 BitFlow, Inc. Version G.8

31.2 R2RegPeek

Prototype R2RC R2RegPeek(RdRn Board, BFU32 RegId)

Description Reads a bit field out of a full 32-bit register.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

Returns The bit field value.

Comments Register IDs for partial registers (bit fields) and for full registers (32-bits) are intermin-
gled into the same table. Function R2RegFlags may be used to distinguish the two
register types (BFF_NSET for bit field registers, BFF_WSET for full registers).

Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

Road Runner/R3 Register Access R2RegPeekWait

Version G.8 BitFlow, Inc. SDK-31-3

31.3 R2RegPeekWait

Prototype R2RC R2RegPeekWait(RdRn Board, BFU32 RegId, BFU32 WaitValue, BFU32 Wait-
Milliseconds)

Description Waits for a register value to match a desired value or return after a time-out.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

WaitValue

Register value to wait on.

WaitMilliseconds

Wait time-out in milliseconds.

Returns The desired register value or the register contents at time-out.

Comments The register value is immediately tested against the WaitValue and will return if the
values match.

R2RegPeekWait spins on the register contents during the current threads entire time
slice. Processor time is not shared back to other threads.

The minimum wait time will always be at least as long as the specified wait regardless
of clock granularity.

The actual maximum wait time is shown in Table 31-1

Where:

T = WaitMilliseconds
G = The clock granularity in milliseconds

Example

Table 31-1 Maximum Wait Time

Formula Conditions

T + 2G - T% - 1 when T%G != 0

T + G – 1 when T%G == 0

R2RegPeekWait BitFlow SDK

SDK-31-4 BitFlow, Inc. Version G.8

Enable triggered acquires and issues a snap command. Use R2RegPeekWait to wait
for the triggered snap to start and then disable triggering.

Road Runner/R3 Register Access R2RegPoke

Version G.8 BitFlow, Inc. SDK-31-5

31.4 R2RegPoke

Prototype R2RC R2RegPoke(RdRn Board, BFU32 RegId, BFU32 RegValue)

Description Writes a value to a register.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

RegValue

Value to write into the register.

Returns

Comments Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

Full (32-bit) registers are written directly. A read-modify-write is used to set bit field
registers within a full register.

R2_OK If successful.

R2_BAD_BIT_ID Illegal register ID.

R2RegRMW BitFlow SDK

SDK-31-6 BitFlow, Inc. Version G.8

31.5 R2RegRMW

Prototype R2RC R2RegRMW(RdRn Board, BFU32 RegId, BFU32 RegValue, BFU32 RegMask)

Description Read-modify-write to a masked area within a register.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

RegValue

Value to write into the register.

RegMask

Mask bits defining register bits to be modified.

Returns

Comments Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

The RegValue is masked with RegMask and the result is masked into the target reg-
ister.

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

Road Runner/R3 Register Access R2RegName

Version G.8 BitFlow, Inc. SDK-31-7

31.6 R2RegName

Prototype R2RC R2RegName(RdRn Board, BFU32 RegId, LPSTR pRegName, BFU32 Size)

Description Gets a register’s name.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

pRegName

Pointer to register name storage.

Size

Register name array size.

Returns

Comments Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

There are RegCount register IDs from ID 0 to ID RegCount - 1.

The register name will be truncated to fit the provided name buffer.

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

R2RegFlags BitFlow SDK

SDK-31-8 BitFlow, Inc. Version G.8

31.7 R2RegFlags

Prototype R2RC R2RegFlags(RdRn Board, BFU32 RegId, PBFU32 FlagsPtr)

Description Gets a register’s type flags.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

FlagsPtr

Pointer to register flag storage.

Returns

Comments Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

There are RegCount register IDs from ID 0 to ID RegCount - 1.

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

Road Runner/R3 Register Access R2RegShift

Version G.8 BitFlow, Inc. SDK-31-9

31.8 R2RegShift

Prototype R2RC R2RegShift(RdRn Board, BFU32 RegId, PBFU32 ShiftPtr)

Description Gets a register’s bit field shift count.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

ShiftPtr

Pointer to shift count storage.

Returns

Comments The register shift field count is the number of bit positions a register value must be
shifted to the left to fall within the register's bit field.

Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

Example

The following code uses R2RegObjectId, R2RegShift and R2RegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling R2RegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
R2RegObjectId(Board, REG_MUXC, &Parent)
R2RegShift(Board, REG_MUXC, &Shift)
R2RegMask(Board, REG_MUXC, &Mask)
ParentValue = R2RegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

R2RegMask BitFlow SDK

SDK-31-10 BitFlow, Inc. Version G.8

31.9 R2RegMask

Prototype R2RC R2RegMask(RdRn Board, BFU32 RegId, PBFU32 MaskPtr)

Description Gets a register’s bit field mask.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

MaskPtr

Pointer to storage for the register’s bit field mask.

Returns

Comments A bit field mask is used to access bit field data stored in a full 32-bit register.

Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

Example

The following code uses R2RegObjectId, R2RegShift and R2RegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling R2RegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
R2RegObjectId(Board, REG_MUXC, &Parent)
R2RegShift(Board, REG_MUXC, &Shift)
R2RegMask(Board, REG_MUXC, &Mask)
ParentValue = R2RegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

Road Runner/R3 Register Access R2RegObjectId

Version G.8 BitFlow, Inc. SDK-31-11

31.10 R2RegObjectId

Prototype R2RC R2RegObjectId(RdRn Board, BFU32 Regld, PBFU32 ObjectIdPtr)

Description Gets a register’s wide register object ID.

Parameters Board

Road Runner/R3 board ID.

RegId

Register ID.

ObjectIDPtr

Pointer to wide register object ID storage.

Returns

Comments A bit field register's parent ID is used with a register's bit field mask and bit field count
to directly access bit fields within a full 32-bit register.

Register IDs are declared in BFTabRegister.h and/or R2TabRegister.h.

Example

The following code uses R2RegObjectId, R2RegShift and R2RegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling R2RegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
R2RegObjectId(Board, REG_MUXC, &Parent)
R2RegShift(Board, REG_MUXC, &Shift)
R2RegMask(Board, REG_MUXC, &Mask)
ParentValue = R2RegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

R2_OK Function successful.

R2_BAD_BIT_ID Illegal register ID.

R2RegObjectId BitFlow SDK

SDK-31-12 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-32-1

Road Runner/R3 Control Tables

Chapter 32

32.1 Introduction

These functions allow an application to write directly to the control tables (CTAB) on the
Road Runner/R3. Normally the CTABs are initialized from a camera configuration file.
However, because the CTABs control things like frame rate and exposure time, an appli-
cation may want to modify them on-the-fly.

Modifying CTABS from Software BitFlow SDK

SDK-32-2 BitFlow, Inc. Version G.8

32.2 Modifying CTABS from Software

It is often necessary for an application to modify the CTABs dynamically, based on
user input or as the result of a calculation on image data. The SDK provides function-
ality for modifying the CTABs from an application. The primary function used to pro-
gram the CTAB is “R2CtabFill()”. This function writes a masked value to the Road
Runner/R3’s camera control table. The following sections illustrate the use of “R2Ctab-
Fill()” to modify CTABs.

Road Runner/R3 Control Tables Controlling the Exposure on a Dalsa Line Scan Camera

Version G.8 BitFlow, Inc. SDK-32-3

32.3 Controlling the Exposure on a Dalsa Line Scan Camera

The PRIN (pixel reset) input to the Dalsa line scan camera can be used to reduce the
exposure time. BitFlow’s Dalsa specific cabling connects PRIN to the Road Runner/
R3’s CT2 output. CT2 is controlled by the HCON2 entry in the HCTAB. When PRIN is
low, the CCD is continuously discharged. The rising edge of PRIN starts the exposure
period, which continues until the EXSYNC pulse moves the charges into the camera’s
output shift registers.

One of the advantages to using PRIN is that the line rate and the exposure period can
be de-coupled. The length of the PRIN window determines the exposure, and the
location of the horizontal reset (HSTART=1, HEND=1) determines the line rate. This
method allows independent adjustment of line rate and exposure period.

The following example will program the Road Runner/R3 for a given exposure time
based on a variable exp_time. This example also uses line_rate, which is the desired
line rate and pix_clock, which is the pixel clock output from the camera.

/*
* Determine the boundaries of the Horizontal Window
*/

// find start of video
i = 0;
while (i < 0x2000 && R2CTabPeek(board,i,R2HCTabStart) = 0)

i++;

if (i == 0x2000) return -1;// no horizontal video window found

vid_win_start = i;

// find end of video
while (i < 0x2000 && R2CTabPeek(board,i, R2HCTabStop) = 0)

i++;

vid_win_end = i;
/*
* Calculate start horizontal reset position from
* line rate parameter:
* HRESET = 0x0800 + (pixel clock / 4) / line rate
* pixel clock must be determined from
* the camera’s PVAL output
* but is usually half the MCLCK
*/

hreset_pos = 0x0800 + (pix_clock / 4) / line_rate;

if (hreset_pos >= 0x2000)
return -1; // line rate too slow

if (hreset_pos < vid_win_end)
return -1; // line rate too fast

Controlling the Exposure on a Dalsa Line Scan Camera BitFlow SDK

SDK-32-4 BitFlow, Inc. Version G.8

/*
* Program HRESET
*/

//program in horizontal reset
R2CTabFill(board,hreset_pos,0x0001,R2HCTabStart,0xFFFF);
R2CTabFill(board,hreset_pos,0x0001,R2HCTabStop,0xFFFF);

/*
* Calculate start and end points exposure period
* exp_time is in seconds (must be float)
*/

exp_prd_size = (int) (exp_time * (float)(pix_clock / 4);

// check to see if exposure period is possible
if (exp_prd_size < 0)

return -1; // too short
if (hreset_pos - exp_prd_size < vid_win_start)

return -1; // too long

//make sure entire table is high
R2CTabFill(board,0x0000,0x2000,R2HCTabHCON2,0xFFFF); // High
//program PRIN low up to start of exposure period
R2CTabFill(board,vid_win_start,

hreset_pos - vid_win_start -exp_prd_size,
R2HCTabHCON2,0); // Low

Road Runner/R3 Control Tables Changing Exposure Time in Double Pulse Mode on the Pulnix TM-9700

Version G.8 BitFlow, Inc. SDK-32-5

32.4 Changing Exposure Time in Double Pulse Mode on the Pulnix TM-
9700

Double pulse mode allows the Road Runner/R3 to control the TM-9700’s exposure
time. This example uses the file “PnTn9700E1.cam,” which by default has a 32-line
exposure time. It changes the VCTAB to achieve a one-line exposure time. The video
starts a fixed number of lines after the second pulse ends. Therefore, the vertical
acquisition window must be moved by the same amount as the second pulse. Note:
the VINIT signal is active low, so our “pulses” are actually “0s” in the VCON0 table. The
rest of this column must be filled with ones.

/* make sure camera is configured for a one-shot mode */
if (R2RegPeek(board,REG_VSTOP) != 1)

return error;

/* hold CTAB output so camera is not disturbed */
R2RegPoke(board,REG_CTABHOLD,1);

 /* program new exposure time */
/* program reset for 1 line exposure */
/* This means 10 lines before second pulse, start first

pulse.
As per Pulnix manual, 10 lines between pulses is equivalent
to one line exposure time. */
//Start first pulse at 0x0001
R2CTabFill(board,0,0x0001,R2VCTAB_VCON0,0xFFFF);// High
R2CTabFill(board,0,0x0002,R2VCTAB_VCON0,0);// Low

//Second pulse starts at 0x000D
R2CTabFill(board,0x0003,0x000A,R2VCTAB_VCON0,0xFFFF);//

High
R2CTabFill(board,0x000D,0x0002,R2VCTAB_VCON0,0);// Low

// rest of table is ones
R2CTabFill(board,0x000F,0x1FF0,R2VCTAB_VCON0,0xFFFF);//

High
 // now move video window, always starts 0x0028 lines after
// leading edge of second pulse
R2CTabFill(board,0,0x2000, R2HCTabStart, 0);//Clear
R2CTabFill(board,0,0x2000, R2HCTabStop, 0);//Clear
R2CTabFill(board,0x0035,0x0001, R2HCTabStart, 0xFFFF);//

Video Start
R2CTabFill(board,0x0219,0x0001, R2HCTabStop, 0xFFFF);//

Video End

/* enable CTAB output */
R2RegPoke(board,REG_CTABHOLD,0);

/* start grab mode */

Changing Exposure Time in Double Pulse Mode on the Pulnix TM-9700 BitFlow SDK

SDK-32-6 BitFlow, Inc. Version G.8

R2RegPeek(board,REG_VSTOP);// allow Road Runner/R3 to free-
run

rc = R2AqCommand(board,R2ConGrab,R2ConAsync,0);
if (rc != R2_OK) return error;

/* perform live operations */

Road Runner/R3 Control Tables Controlling Exposure Time in the One Shot Mode on Kodak Cameras

Version G.8 BitFlow, Inc. SDK-32-7

32.5 Controlling Exposure Time in the One Shot Mode on Kodak Cameras

The Road Runner/R3 is able to control the exposure time of the one shot mode. Note:
The camera must be in “Controlled” mode (MDE CD). The exposure is determined by
how long the Road Runner/R3 drives the camera’s exposure input low. This is pro-
grammed into the VCON0 bit of the VCTAB. The exposure time is determined by the
number of lines during which VCON0 is low, multiplied by the camera’s line time,
which is 139.4 microseconds for the model 1.4i or 236.8 microseconds for the model
2.4i.

The example below cuts two-thirds off the exposure time contained in the camera
configuration file. Since the exposure setting in the configuration files is approxi-
mately 100 microseconds, this will result in an exposure of about 33 microseconds.

/* make sure camera is configured for a one-shot mode */
if (R2RegPeek(board,REG_VSTOP) != 1)

return error;

/* put camera into shutter "controlled" mode */
R2ConGPOut(board,0);

/* hold CTAB output so camera is not disturbed */
R2RegPoke(board,REG_CTABHOLD,1);

/* search VCTAB for shutter close */
sc = 1;
while (!R2CTabPeek(board,sc,R2VCTAB_VCON0))

++sc;

/* adjust exposure time */
nc = sc/3; // any formula can be used here...

// ...this one cuts exposure by 1/3

/* make sure new exposure time is valid */
if (nc > 1900) // don't hold open past 1900...

nc = 1900; // ...shutter needs time to close

/* program new exposure time */

// shutter open from 1 to nc:
R2CTabFill(board,1,nc-1,R2VCTAB_VCON0,0);

// shutter closed from nc to 2048:
R2CTabFill(board,nc,2048-nc,R2VCTAB_VCON0,0xFFFF);

/* enable CTAB output */
R2RegPoke(board,REG_CTABHOLD,0);

/* acquire a single frame with software trigger */

Controlling Exposure Time in the One Shot Mode on Kodak Cameras BitFlow SDK

SDK-32-8 BitFlow, Inc. Version G.8

// start cycle with a software trigger
R2ConSwTrig(board,R2TrigA);

rc = R2AqCommand(board,R2ConSnap,R2ConWait,0);
if (rc != R2_OK)

return error;

Road Runner/R3 Control Tables R2CTabPeek

Version G.8 BitFlow, Inc. SDK-32-9

32.6 R2CTabPeek

Prototype BFU16 R2CTabPeek(RdRn Board, BFU32 Index, BFU16 Mask)

Description Reads a single masked value from the Road Runner/R3 Camera Control Table.

Parameters Board

Road Runner/R3 board ID.

Index

CTAB table offset.

0x0000 to 0x2000 for horizontal CTABs
0x0000 to 0x8000 for vertical CTABs

Mask

CTAB bit extraction mask.

R2CTab
R2HCTab
R2VCTab
R2HCTabHEnd
R2HCTabHStart
R2HCTabClamp
R2HCTabField
R2HCTabHStrobe
R2HCTabHCon0
R2HCTabHCon1
R2HCTabHCon2
R2VCTabVEnd
R2VCTabVLoad
R2VCTabVStart
R2VCTabIRQ
R2VCTabVStrobe
R2VCTabVCon0
R2VCTabVCon1
R2VCTabVCon2

Returns A single masked CTAB entry.

Comments CTAB bit masks and other definitions are declared in R2Reg.h.

Example

Check for a horizontal start bit in the horizontal CTAB at the horizontal load point loca-
tion R2HLoad (0x800).

R2CTabPeek BitFlow SDK

SDK-32-10 BitFlow, Inc. Version G.8

BFU32 HStartBit
HStartBit = R2CTabPeek(Board, R2HLoad, R2HCTabHStart)

Road Runner/R3 Control Tables R2CTabPoke

Version G.8 BitFlow, Inc. SDK-32-11

32.7 R2CTabPoke

Prototype R2RC R2CTabPoke(RdRn Board, BFU32 Index, BFU16 Mask, BFU16 Value)

Description Writes a single masked value from the Road Runner/R3 Camera Control Table.

Parameters Board

Road Runner/R3 board ID.

Index

CTAB table offset.

Mask

CTAB bit extraction mask (see R2CtabPeek).

Value

CTAB value.

Returns

Comments CTAB bit masks and other definitions are declared in R2Reg.h.

Example

Write a vertical stop bit in the vertical CTAB 0x100 lines beyond the vertical load loca-
tion (R2VLoad = 0x1000).

R2CTabPoke(Board, R2VLoad + 0x100, R2VCTabVStop, R2CTabSet)

R2_OK Function succeeded.

R2_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R2_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R2_CTAB_POKE_ERR CTAB poke failed.

R2CTabRead BitFlow SDK

SDK-32-12 BitFlow, Inc. Version G.8

32.8 R2CTabRead

Prototype R2RC R2CTabRead(RdRn Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pDest)

Description Reads masked CTAB values from the Road Runner/R3 Camera Control Table.

Parameters Board

Road Runner/R3 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see R2CtabPeek).

pDest

Pointer to CTAB table storage (32 bits per entry).

Returns

Comments CTAB bit masks and other definitions are declared in R2Reg.h.

Example

Read 0x100 values from the vertical CTAB starting at the vertical load point.

BFU32 VTab[0x100]
R2CTabRead(Board, R2VLoad, 0x100, R2VCTab, &VTab[0])

R2_OK Function succeeded.

R2_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R2_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R2_CTAB_READ_ERR CTAB read failed.

Road Runner/R3 Control Tables R2CTabWrite

Version G.8 BitFlow, Inc. SDK-32-13

32.9 R2CTabWrite

Prototype R2RC R2CTabWrite(RdRn Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pSource)

Description Writes masked CTAB values from the Road Runner/R3 Camera Control Table.

Parameters Board

Road Runner/R3 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see R2CtabPeek).

pSource

CTAB entries to write (32 bits per entry).

Returns

Comments CTAB bit masks and other definitions are declared in R2Reg.h.

Example

Write an entire horizontal CTAB to the Road Runner/R3.

BFU32 HTab[R2HCTABSIZE]
R2CTabWrite(Board, 0, R2HCTABSIZE, R2HCTab, &HTab[0])

R2_OK Function succeeded.

R2_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R2_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R2_CTAB_WRITE_ERR CTAB write failed.

R2CTabFill BitFlow SDK

SDK-32-14 BitFlow, Inc. Version G.8

32.10 R2CTabFill

Prototype R2RC R2CTabFill(RdRn Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
BFU16 Value)

Description Writes a masked CTAB fill value from the Road Runner/R3 Camera Control Table.

Parameters Board

Road Runner/R3 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to write.

Mask

CTAB bit extraction mask (see R2CtabPeek).

Value

CTAB fill value to write.

Returns

Comments CTAB bit masks and other definitions are declared in R2Reg.h.

Example

Clear the horizontal and vertical CTAB tables.

R2CTabFill(Board, 0, R2HCTABSIZE, R2HCTab, 0x0000)
R2CTabFill(Board, 0, R2VCTABSIZE, R2VCTab, 0x0000)

R2_OK Function succeeded.

R2_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R2_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R2_CTAB_FILL_ERR CTAB fill failed.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-33-1

Road Runner Quad Tables

Chapter 33

33.1 Introduction

These functions allow an application to access the Road Runner’s quad tables (QTab).
There is almost never a situation where a user’s application will need to write directly to
the QTABs. Generally, application access to the QTABs is handled at a much higher level
and is invisible to the user. If an application does need lower level control, then the
R2RelQTab functions can be used. These functions are included here for completeness
only.

Note: There is now memory for QTABs mounted on the R3 family. Therefore, none of these
low level functions will work with an R3. The R3 uses host QTABs only.

R2QTabPeek BitFlow SDK

SDK-33-2 BitFlow, Inc. Version G.8

33.2 R2QTabPeek

Prototype BFU32 R2QTabPeek(RdRn Board, BFU8 Bank, BFU32 Index)

Description Reads a single 32-bit value from the Road Runner Quad Table.

Parameters Board

Road Runner board ID.

Bank

QTab bank:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Index

QTab table offset.

Returns A single 32-bit QTab entry.

Comments QTab bank definitions are declared in R2Reg.h.

Road Runner Quad Tables R2QTabPoke

Version G.8 BitFlow, Inc. SDK-33-3

33.3 R2QTabPoke

Prototype R2RC R2QTabPoke(RdRn Board, BFU8 Bank, BFU32 Index, BFU32 Value)

Description Writes a single 32-bit value to the Road Runner Quad Table.

Parameters Board

Road Runner board ID.

Bank

QTab bank:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Index

QTab table offset.

Value

QTab value.

Returns

Comments QTab bank definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_BAD_QTAB_BANK Illegal QTab bank.

R2_BAD_QTAB_ADDR Illegal QTab address.

R2_QTAB_POKE_ERR QTab poke failed.

R2QTabRead BitFlow SDK

SDK-33-4 BitFlow, Inc. Version G.8

33.4 R2QTabRead

Prototype R2RC R2QTabRead(RdRn Board, BFU8 Bank, BFU32 Index, BFU32 NumEntries,
PBFVOID pDest)

Description Reads 32-bit QTab values from the Road Runner Quad Table.

Parameters Board

Road Runner board ID.

Bank

QTab bank:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Index

QTab table offset.

NumEntries

Number of QTab values to read.

pDest

Pointer to QTab table storage (32-bits per entry).

Returns

Comments QTab bank definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_BAD_QTAB_BANK Illegal QTab bank.

R2_BAD_QTAB_ADDR Illegal QTab address.

R2_QTAB_READ_ERR QTab read failed.

Road Runner Quad Tables R2QTabWrite

Version G.8 BitFlow, Inc. SDK-33-5

33.5 R2QTabWrite

Prototype R2RC R2QTabWrite(RdRn Board, BFU8 Bank, BFU32 Index, BFU32 NumEntries,
PBFVOID pSource)

Description Writes 32-bit QTab values to the Road Runner Quad Table.

Parameters Board

Road Runner board ID.

Bank

QTab bank:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Index

QTab table offset.

NumEntries

Number of QTab values to write.

pSource

Pointer to QTab entries to write (32-bits per entry).

Returns

Comments QTab bank definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_BAD_QTAB_BANK Illegal QTab bank.

R2_BAD_QTAB_ADDR Illegal QTab address.

R2_QTAB_WRITE_ERR QTab write failed.

R2QTabFill BitFlow SDK

SDK-33-6 BitFlow, Inc. Version G.8

33.6 R2QTabFill

Prototype R2RC R2QTabFill(RdRn Board, BFU8 Bank, BFU32 Index, BFU32 NumEntries,
BFU32 Value)

Description Writes 32-bit QTab fill values to the Road Runner Quad Table.

Parameters Board

Road Runner board ID.

Bank

QTab bank:

R2QTabBank0 - set bank 0
R2QTabBank1 - set bank 1

Index

QTab table offset.

NumEntries

Number of QTab values to write.

Value

QTab fill value to write.

Returns

Comments QTab bank definitions are declared in R2Reg.h.

R2_OK Function succeeded.

R2_BAD_QTAB_BANK Illegal QTab bank.

R2_BAD_QTAB_ADDR Illegal QTab address.

R2_QTAB_FILL_ERR QTab fill failed.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-34-1

Road Runner/R3 Error Handling

Chapter 34

34.1 Introduction

All of the SDK functions will return error codes if the function does not execute correctly.
High-level functions call mid level functions which in turn call low-level functions, which in
turn call kernel functions. Because this chain can be so long and some of the errors may
happen in low-level call, the return code of the top level function may not be very useful
in debugging the root cause of the problem.

For these reasons, the SDK uses an error stack. As errors occur, they are put on the stack.
The stack can be walked and the errors can be examined, one by one, to determine the
root cause of the malfunction.

Errors can be sent to a number of destinations; each destination is independent of all
other destinations. The possible destinations are the even viewer, a pop-up dialog, a
debugger (if there is one running), and a file. Also, an error can cause the application to
abort at either the user or the kernel level. Each destination can be turned on or off inde-
pendently. Furthermore, each destination can be programmed to selectively filter out one
or more particular errors.

R2ErrorXXXXXX BitFlow SDK

SDK-34-2 BitFlow, Inc. Version G.8

34.2 R2ErrorXXXXXX

Prototype R2RC R2ErrorEnableEvent(RdRn Board, BFU32 Filter) - enables event viewer errors

R2RC R2ErrorDisableEvent(RdRn Board, BFU32 Filter) - disable event viewer errors

R2RC R2ErrorEnableDebugger(RdRn Board, BFU32 Filter) - enables debugger errors

R2RC R2ErrorDisableDebugger(RdRn Board, BFU32 Filter) - disables debugger
errors

R2RC R2ErrorEnableDialog(RdRn Board, BFU32 Filter) - enables dialog errors

R2RC R2ErrorDisableDialog(RdRn Board, BFU32 Filter) - disables dialog errors

R2RC R2ErrorEnableFile(RdRn Board, BFU32 Filter) - enables log file errors

R2RC R2ErrorDisableFile(RdRn Board, BFU32 Filter) - disables log file errors

R2RC R2ErrorEnableBreakUser(RdRn Board, BFU32 Filter) - enables user level break
after error

R2RC R2ErrorDisableBreakUser(RdRn Board, BFU32 Filter) - disables user level break
after error

R2RC R2ErrorEnableAll(RdRn Board, BFU32 Filter) - enables errors for all error
devices

R2RC R2ErrorDisableAll(RdRn Board, BFU32 Filter) - disable errors for all error
devices

Description These functions controls which error messages are active for each error destination.

Parameters Board

Board to set error destination(s) on.

Filter

Error(s) to enable or disable.

Returns

Comments Each of the functions are independent. Each error destination can have its own list of

R2_OK If successful.

Non-zero On error.

Road Runner/R3 Error Handling R2ErrorXXXXXX

Version G.8 BitFlow, Inc. SDK-34-3

enable and disable errors independent of all other destinations. If an error destina-
tion gets conflicting instructions (e.g., calling R2ErrorEnable(board,ErrorBug) fol-
lowed by R2ErrorDisable(board,ErrorAll)), the last error function that is called takes
precedence.

Filter can be one of the following options:

A single error number (see "R2TabError.h" and "BFTabError.h").

One or more error types ORed together. The error types are:

ErrorBug - outright bug in the code that must be fixed.
ErrorFatal - deep, deep trouble. Program execution cannot continue.
ErrorWarn - something is wrong but recovery is possible.
ErrorInfo - informational messages.

The error type that represents none of the errors.

ErrorNone

The error type that represents all errors.

ErrorAll

R2ErrorXXXXXX BitFlow SDK

SDK-34-4 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-35-1

R64 Introduction

Chapter 35

35.1 Overview

The R64 architecture was first implemented on the R64. This was BitFlow’s 5th generation
frame grabber, so it is a highly evolved architecture. Subsequently the same architecture
was used on the following frame grabbers, the Karbon family, the Neon and the Alta fam-
ily. The R64 API can be use to access any of these board families, although we encourage
you to use the Ci API, which is guaranteed to support all current and future board families.

The R64 architecture is based around BitFlow’s Flow-Thru architecture. This design allows
data to be DMAed into host memory with the least amount of latency and virtually no CPU
involvement. The camera link boards interface with base, medium and full configuration
Camera Link cameras as well as two base configuration cameras (dual base). To accom-
modate full configuration cameras, the boards internal data paths are all 64 bits wide. Pix-
els from cameras that output less than 64 bits are packed into 64 bit words. DMA
operations are always 64 bits. Output from multi-tapped camera is reformatted on-the-fly
into raster order by the boards formatting circuitry. For more detailed hardware informa-
tion, please refer to the appropriate Hardware Reference Manuals. Figure 35-1 shows the
block diagram of the R64 architecture.

Overview BitFlow SDK

SDK-35-2 BitFlow, Inc. Version G.8

Figure 35-1 R64 architecture Block Diagram

8

64 64

64

64 64

64

64

64

Camera
Interface

(CL or AFE)

MUX
Video Pipeline,

Data Packer

PCI Interface,
Scatter-Gather
DMA Engine

Camera
Control,
CTABs

FIFO

I/O,
Triggers,
Encoders

UART
Serial

Interface
(CL boards only)

Connector(s)

Local Bus

PCI/PCIe Bus

I/O Connector(s)

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-36-1

R64 System Open and Initialization

Chapter 36

36.1 Introduction

The functions described in this chapter are quite simple; the idea is to find the board or
boards that you want to work with, then open and optionally initialize them. When you are
finished, close the system up, thus cleaning up all resources allocated in the open func-
tion.

A normal program would uses these functions, in this order:

R64SysBoardFindByXXXX
R64BrdOpen

// acquisition and processing

R64BrdClose

If you want to open two boards, the flow would be as follows:

R64SysBoardFindByXXXX // find board 0
R64BrdOpen // open board 0
R64SysBoardFindByXXXX // find board 1
R64BrdOpen // open board 1

// acquisition and processing

R64BrdClose // close board 0
R64BrdClose // close board 1

The board find functions are used to make sure that you are opening the correct board in
a multi-board system. If you have only one board, then the call is trivial.

Note: There is currently only one board find function, R64SysBoardFindByNum.

The handle return by the function R64BrdOpen is used in all subsequent function calls. If
you are using two or mode boards, open each board and store each handle in a separate
variable. Whenever you want to talk to board X, pass the handle for board X to the func-
tion.

There is no need to call R64BrdOpen more than once per process per board. Because
this function takes a fair amount of CPU time and allocated resources, we discourage
users from repeatedly calling R64BrdOpen and the R64BrdClose in a loop. We recom-
mend opening the board once, when the application starts, and closing it once when the
application exits. If you are using a program that has multiple threads, open the board
once in the first main thread and then pass the board handle to every thread that is subse-

Introduction BitFlow SDK

SDK-36-2 BitFlow, Inc. Version G.8

quently created. You must call R64BrdClose for every board that is open with
R64BrdOpen. You should also call R64BrdClose in the same thread the R64BrdOpen
was called in.

R64 System Open and Initialization R64SysBoardFindByNum

Version G.8 BitFlow, Inc. SDK-36-3

36.2 R64SysBoardFindByNum

Prototype R64RC R64SysBoardFindByNum(BFU32 Number, PR64ENTRY pEntry)

Description Finds a R64 on the PCI bus with a given number.

Parameters Number

The number of the board to find. Boards are numbered sequentially as they are found
when the system boots. A given board will be the same number every time the system
boots as long as the number of boards and the R64 is in the same PCI slot.

pEntry

A pointer to an empty R64ENTRY structure, used to tell the R64BrdOpen function
which board to open.

Returns

Comments If you have only one board in your system set Number = 0 and only call this function
once. This function can be used to enumerate all of the boards in a system. It can be
called repeatedly, incrementing Number each time, until the function returns BFSYS_
ERROR_NOTFOUND.

There is no standard way to correlate the Number parameter of this function to the
PCI slot number. Every motherboard and BIOS manufacturer has a different scheme.
You can use the system configuration utility, SysReg, to determine the relationship
between slot number and board Number, by setting the board ID switches different
for each board in your system and walking through all the installed boards.

R64_OK The board was successfully found.

BFSYS_ERROR_NOTFOUND There is no board with this number.

R64BrdOpen BitFlow SDK

SDK-36-4 BitFlow, Inc. Version G.8

36.3 R64BrdOpen

Prototype R64RC R64BrdOpen(PR64ENTRY pEntry, R64 *pBoard, BFU32 Mode)

Description Opens a R64 for access. This function must return successfully before any other R64
SDK functions are called (with the exception of R64SysBoardFindNum).

Parameters pEntry

A pointer to a filled out R64ENTRY structure. This structure describes which board is
to be opened. The structure is filled out by a call to the R64SysBoardFindNum func-
tion.

*pBoard

A pointer to a R64 handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

BFSysInitialize - initialize the board.
BFSysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
BFSysNoIntThread - do not start interrupt IRP thread.
BFSysNoCameraOpen - do not open any configured cameras.
BFSysNoAlreadyOpenMess - suppress already open warning message.
BFSysNoOpenErrorMess - suppress all error popups in open function
BFSysSecondProcessOpen - special mode that allows the board to be

opened twice in the same process (includes of some of the above
modes).

Returns

R64_OK Function was successful.

BF_ALREADY_OPEN_PROC Another thread in the process has already
opened the board, this open not allowed.

BF_ALREADY_OPEN_EXEC_
YOU

Another process has opened the board in
BFSysExclusive mode, this open is not allowed.

BF_ALREADY_OPEN_EXEC_
ME

You have attempted to open the board in
BFSysExclusive but the board is already
opened by another process, this open not
allowed.

R64 System Open and Initialization R64BrdOpen

Version G.8 BitFlow, Inc. SDK-36-5

Comments This function opens the board for all accesses. Call the R64SysBoardFindNum func-
tion first to find the board you wish to open. Then call this function to open to board.
The board must be opened before any other functions can be called. When you are
finished accessing the board you must call R64BrdClose, before exiting your process.
Failure to call R64BrdClose will result in incorrect board open counts used by the
driver.

If this function fails, you cannot access the board. Also, you do not need to call
R64BrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call R64BrdClose
first.

Calling this function with Mode = BFSysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = BFSysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use.

If Mode = BFSysExclusive, then you will not be able to open the board if any other
process has already opened the board, regardless of the mode the other process
used to open the board. Finally, if you do succeed in opening the board in this mode,
no other processes will be allowed to open the board.

BF_BAD_MUTEX Error occurred allocating a MUTEX object from
the operating system.

BF_BAD_CAM Error opening one of the camera files config-
ured for this board.

BF_BAD_INIT Error initializing the board.

BFSYS_ERROR_ALLOCATION Error allocating resources required for this
board.

BFSYS_ERROR Low-level error opening board.

R64BrdOpenCam BitFlow SDK

SDK-36-6 BitFlow, Inc. Version G.8

36.4 R64BrdOpenCam

Prototype R64RC R64BrdOpenCam(PR64ENTRY pEntry, R64 *pBoard, BFU32 Mode, PBF-
CHAR ForceCamFile)

Description Opens a R64 for access. This function must return successfully before any other R64
SDK functions are called (with the exception of R64SysBoardFindNum).

Parameters pEntry

A pointer to a filled out R64ENTRY structure. This structure describes which board is
to be opened. The structure is filled out by a call to the R64SysBoardFindNum func-
tion.

*pBoard

A pointer to a R64 handle. This handle is used for all further accesses to the newly
opened board. This function takes a pointer to a handle where as all other functions
just take a handle.

Mode

This parameter allows for different modes of opening the board, one or more of these
parameters can be ORed together:

0 - board will open normally but not initialized. Board registers are not
changed.

BFSysInitialize - initialize the board.
BFSysExclusive - open only if no other process has, and do not allow any

subsequent process to open the board.
BFSysNoIntThread - do not start interrupt IRP thread.
BFSysNoCameraOpen - do not open any configured cameras.
BFSysNoAlreadyOpenMess - suppress already open warning message.
BFSysNoOpenErrorMess - suppress all error popups in open function
BFSysSecondProcessOpen - special mode that allows the board to be

opened twice in the same process (includes of some of the above
modes).

ForceCamFile

The camera file to open. The camera file should include the name and the file exten-
tion. If only the file name and extention are given, the camera configuration path is
searched for the camera file. (The camera configuration path by default is the Config
folder under the SDK root.) If the full path is given, the camera file will try and be
opened from that location.

Returns

R64_OK Function was successful.

R64 System Open and Initialization R64BrdOpenCam

Version G.8 BitFlow, Inc. SDK-36-7

Comments This function opens the board for all accesses. Call the R64SysBoardFindNum func-
tion first to find the board you wish to open. Then call this function to open to board.
The board must be opened before any other functions can be called. When you are
finished accessing the board you must call R64BrdClose, before exiting your process.
Failure to call R64BrdClose will result in incorrect board open counts used by the
driver.

If this function fails, you cannot access the board. Also, you do not need to call
R64BrdClose.

This function must be called once for each board that needs to be opened. Each
board will have its own handle when opened. When you want to perform an opera-
tion on a certain board, pass the function the handle to that board.

You should only call this function once per process per board and in only one thread.
You can call this function again in the same process but you must call R64BrdClose
first.

Calling this function with Mode = BFSysInitialize initializes the board and sets it up for
the first camera that is configured for this board. If another process has already
opened the board using this flag, the board will not be re-initialized, but you will have
access to the board in the state that it is.

The Mode = BFSysExclusive is designed to guarantee that only one process can have
the board open at a time. If the board has already been opened with this flag you will
not be able to open it again, regardless of the Mode parameter that you use.

If Mode = BFSysExclusive, then you will not be able to open the board if any other
process has already opened the board, regardless of the mode the other process
used to open the board. Finally, if you do succeed in opening the board in this mode,
no other processes will be allowed to open the board.

BF_ALREADY_OPEN_PROC Another thread in the process has already
opened the board, this open not allowed.

BF_ALREADY_OPEN_EXEC_
YOU

Another process has opened the board in
BFSysExclusive mode, this open is not allowed.

BF_ALREADY_OPEN_EXEC_
ME

You have attempted to open the board in
BFSysExclusive but the board is already
opened by another process, this open not
allowed.

BF_BAD_MUTEX Error occurred allocating a MUTEX object from
the operating system.

BF_BAD_CAM Error opening one of the camera files config-
ured for this board.

BF_BAD_INIT Error initializing the board.

BFSYS_ERROR_ALLOCATION Error allocating resources required for this
board.

BFSYS_ERROR Low-level error opening board.

R64BrdCamSel BitFlow SDK

SDK-36-8 BitFlow, Inc. Version G.8

36.5 R64BrdCamSel

Prototype R64RC R64BrdCamSel(R64 Board, BFU32 CamIndex, BFU32 Mode)

Description Sets a board’s current camera to the camera with the given index. Depending on the
Mode, the board can also be initialized for this camera.

Parameters Board

Handle to board.

CamIndex

Index of camera to become current. Index is set in SysReg.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but do not modify the board.
BFSysConfigure - initialize the board for this camera.

Returns

Comments Each board has associated with it a list of configured cameras (set in the SysReg appli-
cation) and a current camera. By default, the current camera is the first camera in the
list of configured cameras. The current camera is important because it dictates the
parameters used for acquisition. There must be a current camera set in order to use
the acquisition functions. This function allows you to pick one of the configured cam-
eras to be the current camera.

If Mode = BFSysConfigure, the board will be initialized for the given camera.

This function is useful for switching on-the-fly between multiple pre-configured cam-
era types.

BF_OK Function was successful.

R64_INCOMP Camera file is incompatible with this board, or cam-
era file is incompatible with this version of the SDK.

R64_BAD_CNFG An error occurred initializing the board for this cam-
era file.

R64_BAD_FIRMWARE An error occurred downloading the camera file
requested firmware.

BF_BAD_CAM_INDEX The camera index is not valid or the camera index is
empty.

R64 System Open and Initialization R64BrdCamSetCur

Version G.8 BitFlow, Inc. SDK-36-9

36.6 R64BrdCamSetCur

Prototype R64RC R64BrdCamSetCur(R64 Board, PR64CAM pCam, BFU32 Mode)

Description Sets the current camera to the camera object pCam that is not necessarily one of the
pre-configured cameras. The board can be optionally initialized to the camera.

Parameters Board

Handle to board.

pCam

A camera object.

Mode

When setting the current camera, additional initialization can be performed:

0 - make the camera the current camera but does not modify the board.
BFSysConfigure - initialize the board for this camera.

Returns

Comments This function sets the current camera to a camera object that is not one of the cameras
already configured for the board (via SysReg). The camera must already be opened
successfully (see R64CamOpen).

This function allows you to handle your own camera management. You can select,
open, configure and close cameras to suit your applications needs independently of
the SDK’s camera management.

If Mode = BFSysConfigure, the board will be initialized for the given camera.

R64_OK Function was successful.

R64_INCOMP Camera file is incompatible with this board, or cam-
era file is incompatible with this version of the SDK.

R64_BAD_CNFG An error occurred initializing the board for this cam-
era file.

R64_BAD_FIRMWARE An error occurred downloading the camera file
requested firmware.

BF_BAD_CAM_INDEX The camera index is not valid or the camera index is
empty.

R64BrdInquire BitFlow SDK

SDK-36-10 BitFlow, Inc. Version G.8

36.7 R64BrdInquire

Prototype R64RC R64BrdInquire(R64 Board, BFU32 Member, PBFU32 pVal)

Description Returns parameters about the current board.

Parameters Board

Handle to board.

Member

Parameter to inquire about:

BFBrdInqModel - returns the board model. The parameter pVal will point to one of:

BFBrdValModelR64Cl - 128K DPM, Normal Speed.
BFBrdValModelR64ClB - 256K DPM, Normal Speed.
BFBrdValModelR64ClH - 128K DPM, High Speed.
BFBrdValModelR64ClHB - 256K DPM, High Speed.
BFBrdValModelR64Dif - 128K DPM, Normal Speed.
BFBrdValModelR64DifB - 256K DPM, Normal Speed.
BFBrdValModelR64DifH - 128K DPM, High Speed.
BFBrdValModelR64DifHB - 256K DPM, High Speed.

BFBrdInqLUT - the type of LUT mounted on this board. The parameter pVal will point
to one of:

BFBrdValLUTNone
BFBrdValLUT16

BFBrdInqIDReg - the current setting of the ID switch on the board (0,1,2,3).

BFBrdInqNumCams - the number of cameras attached to the board.

Camera inquiry parameters are also valid. The pVal parameter will point to the value
for the board’s current camera. See R64CamInquire for the meaning of these mem-
bers.

R64CamInqXXXX

pVal

Pointer returned containing the requested value.

Returns

R64_OK Function was successful.

R64_BAD_INQ_PARAM The Member parameter is unknown.

R64 System Open and Initialization R64BrdInquire

Version G.8 BitFlow, Inc. SDK-36-11

Comments This function is used to inquire of the system characteristics of the board. This function
can also be called with R64CamInquire Members, which are then passed to that func-
tion using the board’s current camera.

BF_BAD_CNF_PTR Invalid configuration pointer.

BF_BAD_ITEM_ID The ID of configuration item is not in configuration
structure.

BF_BAD_ID_EMPTY The configuration item is empty.

BF_DEST_TO_SMALL The configuration item is larger than the destination
area.

BF_BAD_INDEX The configuration item has a bad index parameter.

R64BrdClose BitFlow SDK

SDK-36-12 BitFlow, Inc. Version G.8

36.8 R64BrdClose

Prototype R64RC R64BrdClose(R64 Board)

Description Closes the board and frees all associated resources.

Parameters Board

Handle to board.

Returns

Comments This function closes the board and releases associated resources. This function must
be called whenever a process exits regardless of the reason the process is exiting. The
only time that this function does not have to be called is if R64BrdOpen fails. This
function decrements the internal counters that are used to keep track of the number
of processes that have opened the board.

R64_OK In all cases.

R64 System Open and Initialization R64BrdAqTimeoutSet

Version G.8 BitFlow, Inc. SDK-36-13

36.9 R64BrdAqTimeoutSet

Prototype R64RC R64BrdAqTimeoutSet(R64 Board, BFU32 Timeout)

Description Sets the timeout value for this board's current camera.

Parameters Board

Board to select the camera for.

Timeout

New value for timeout, in milliseconds.

Returns

Comments This function sets the timeout value for this board's current camera.

R64_OK If successful.

BF_BAD_CNF_PTR Invalid configuration pointer.

BF_BAD_ITEM_ID The ID of configuration item is not in configuration
structure.

BF_BAD_INDEX The configuration item has a bad index parameter.

BF_BAD_ID_EMPTY The configuration item is empty.

BF_BAD_CNF_SIZE The configuration structure not big enough to
accommodate operation.

R64BrdAqSigGetCur BitFlow SDK

SDK-36-14 BitFlow, Inc. Version G.8

36.10 R64BrdAqSigGetCur

Prototype R64RC R64BrdAqSigGetCur(R64 Board, PBFVOID *pAqSig)

Description Gets the current acquire signal.

Parameters Board

Board to select.

*pAqSig

Pointer to storage for acquire signal.

Returns

Comments This function gets the current acquire signal. See the section on signals to understand
what a signal is.

R64_OK If successful.

BF_BAD_SIGNAL Signal has not been created correctly or was not cre-
ated for this board.

R64 System Open and Initialization R64BrdAqSigSetCur

Version G.8 BitFlow, Inc. SDK-36-15

36.11 R64BrdAqSigSetCur

Prototype R64RC R64BrdAqSigSetCur(R64 Board, PBFVOID pAqSig)

Description Sets the current acquire signal to a signal record provided by the caller.

Parameters Board

Board to select.

pAqSig

Pointer to caller’s signal record.

Returns

Comments This function sets the current acquire signal to a signal record provided by the caller.

R64_OK In all cases.

R64BrdCamGetFileName BitFlow SDK

SDK-36-16 BitFlow, Inc. Version G.8

36.12 R64BrdCamGetFileName

Prototype R64RC R64BrdCamGetFileName(R64 Board, BFU32 Num, PBFCHAR CamName,
BFSIZET CamNameStLen)

Description Gets the file name of the attached camera(s).

Parameters Board

Board to select.

Num

Camera number to get the name of.

CamName

Contains the file name of the camera configuration.

CamNameStLen

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter CamName.

Returns

Comments This function can be used to get the file name for one of the attached camera configu-
rations. These configurations are attached to the board in SysReg. The Num parame-
ter corresponds to the number configuration in the list of attached cameras in SysReg.

R64_OK If successful.

BF_BAD_CAM_LIST There was not list of cameras found.

BF_BAD_CAM_INDEX Invalid camera index.

R64 System Open and Initialization R64BrdCamGetCur

Version G.8 BitFlow, Inc. SDK-36-17

36.13 R64BrdCamGetCur

Prototype R64RC R64BrdCamGetCur(R64 Board, PR64CAM *pCam)

Description Gets a pointer to the current camera configuration structure.

Parameters Board

Board to select.

*pCam

Pointer to new current quad table.

Returns

Comments This function a pointer to the current camera configuration structure. The structure
contains all the data that is in the camera configuration file.

R64_OK In all cases.

R64BrdCamGetCur BitFlow SDK

SDK-36-18 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-37-1

R64 Acquisition

Chapter 37

37.1 Introduction

The acquisition functions are some of the most important in the SDK. While the initializa-
tion functions set up the board’s registers for a particular camera, these functions do most
of the work required to get the board reading to DMA the images to memory.

The functions are organized into three groups:

Setup functions
Command function
Clean up functions

The concept here is that the setup functions are time and CPU intensive, so they should
be called before any time critical processing has begun. In a sense, these are extensions
of the initialization process. Once the setup functions are called for a particular destina-
tion buffer, they need not be called again.

The command function is designed to be used during time critical operations, and
require minimal CPU time. They can be told to return immediately so that other opera-
tions can be performed simultaneously with acquisition. The command function can be
called over and over, as many times as needed, to acquire the buffers locked down in the
setup functions.

The clean up functions free up any resources allocated in the setup functions, and put the
DMA engine in an idle mode.

For example, the basic flow of a program would be:

// Initialization

R64AqSetup
Loop
{

R64AqCommand
}
R64AqCleanup

The bulk of the work is done in the R64AqSetup functions. These functions create a scat-
ter gather table based on the virtual memory address, called a relative QTab.

The relative QTab is passed to the kernel driver, where the destination buffer is locked
down (so that it cannot be paged to disk) and the physical addresses are determined for
each page of the buffer (pages are 4K bytes in 32-bit Windows). These physical addresses
are used to build a physical QTab. This physical QTab is then written to the board in
preparation scatter gather DMAing.

Introduction BitFlow SDK

SDK-37-2 BitFlow, Inc. Version G.8

Finally, the DMA engine is initialized and started. Again, this function need be called
only once, for a particular destination buffer.

The R64AqCommand can be called either synchronously or asynchronously. In the
synchronous case, the function does not return until the command has completed. In
the asynchronous case, the function returns as soon as the command has been issued
to the board. If you need to synchronize your process with the acquisition, you can
use the R64AqWaitDone function or you can use the signaling system. Signaling is the
best way to synchronize to repeated end of frame signals as they do not take any CPU
cycles.

R64 Acquisition R64AqSetup

Version G.8 BitFlow, Inc. SDK-37-3

37.2 R64AqSetup

Prototype R64RC R64AqSetup(R64 Board, PBFVOID pDest, BFU32 DestSize, BFS32 Stride,
BFU32 DestType)

Description Sets a R64 for acquisition to a host buffer. This function must be called before any
acquisition command is issued.

Parameters Board

Handle to board.

pDest

A void pointer to the destination buffer (already allocated).

DestSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in bytes, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

DestType

Type of destination memory:

BFDMADataMem - host memory
BFDMABitmap - display memory

Returns

R64_OK If successful.

BF_BAD_ALLOC Resources required for this operation could not be
allocated.

R64_BAD_STOP The function was unable to reset the board.

R64_BAD_CON_PARAM Bad parameter to control functions.

R64_BAD_CNF Error extracting information from camera configura-
tion.

R64_BAD_MODEL Error building QTab from model parameters.

BF_BAD_ROI Error calculating QTab for ROI

R64AqSetup BitFlow SDK

SDK-37-4 BitFlow, Inc. Version G.8

Comments This function sets up the entire R64’s acquisition systems for acquisition to host. It lock
down the memory, build QTABs, and set up the DMA engine. The QTABs are based
on the current camera pointer in the board structure. This function need be called
only once, before acquisition begins. It does not need to be called again unless
R64AqCleanUp is called. R64AqCleanUp should be called when done acquiring in
order to free up resources used by this process. The only reason to call this function
again is to acquire into a different host buffer or acquire with a different type of cam-
era. Once this function is called, the function R64AqCommand is used to snap, grab,
freeze or abort acquisition.

BF_BAD_ARGS Illegal argument detected.

BF_BAD_SEMAPHORE Error creating or using semaphore.

R64_AQ_NOT_SETUP R64AqSetup has not yet been called and the board
is not ready for an acquisition command.

R64 Acquisition R64AqCommand

Version G.8 BitFlow, Inc. SDK-37-5

37.3 R64AqCommand

Prototype R64RC R64AqCommand(R64 Board, BFU32 Command, BFU32 Mode)

Description Once the R64 is set up for acquisition with R64AqSetup, this function issues the actual
acquisition command.

Parameters Board

Handle to board.

Command

Acquisition command to initiate:

BFConGrab - starting at the beginning of the next frame, acquire every
frame.

BFConSnap - starting at the beginning of the next frame, acquire one
frame.

BFConFreeze - stop acquiring at the end of the current frame. If in
between frames, do not acquire any more frames.

BFConAbort - stop acquiring immediately. If in the middle of the frame,
the rest of the frame will not be acquired.

BFConReset - reset conditions after an abort or overflow. The board is set
up as it was when R64AqSetup was called.

Mode

This function can operate in two modes:

BFConAsync - as soon as the command is issued return.
BFConWait - wait for the current command to complete. For a snap, the

function will return when the entire frame has been acquired into mem-
ory. For a grab, the function will wait until the first frame has begun to
be acquired. For a freeze, the function waits for the current frame to
end. All other commands return immediately.

Returns

R64_OK If successful.

R64_AQ_NOT_SETUP R64AqSetup has not yet been called and the board
is not ready for an acquisition command.

R64_BAD_AQ_CMD A snap or grab command has already been issued
and the board is already acquiring.

R64_BAD_STOP The function was unable to reset the board.

R64_BAD_CON_PARAM Bad parameter to control functions.

R64_TIMEOUT Timeout wait for command.

R64AqCommand BitFlow SDK

SDK-37-6 BitFlow, Inc. Version G.8

Comments This function can only be called after R64AqSetup is called. R64AqSetup need only
be called once for any number and combination of calls to R64AqCommand. Basi-
cally, you call R64AqSetup once for a given host buffer, then call R64AqCommand as
many times as you need to get data into that buffer. Call R64AqCleanUp when you are
done acquiring into that buffer. Then the procedure starts over again for the next buf-
fer.

The R64AqXXXX commands handle both DMA and camera acquisition. No other
commands are needed to handle the process of acquiring into memory.

If you call this function with Mode = BFConWait, it will wait for the acquisition to com-
plete, in the case of a snap or freeze command, or wait for the acquisition to begin, in
the case of a grab command. This is an efficient wait that consumes minimal CPU
cycles. The function will return when the last pixel has been DMAed into memory.
Alternatively, you can call the function with Mode = BFConAsync, and the function
will return as soon as the command has been issued. You can find out how much data
has been DMAed by calling R64AqProgress. You can also just wait for the end of
acquisition by calling R64AqWaitDone.

The functions mentioned above use the SDK’s signaling system to efficiently wait for
events. If you wish to have a higher level of control you can call the R64SignalXXXX
functions yourself. These functions use a signaling system that allow processes to be
notified of R64 events and interrupts. For acquisition, wait for the BFIntTypeEOD sig-
nal. This signal occurs at the end of every frame, in both grab and snap mode. This
signal occurs when the last pixel is DMAed into memory.

Calling this function with Command = BFConAbort will stop acquisition immediately.
The acquisition process can be left anywhere in the frame. You must call this function
with Command = BFConReset before any more acquire commands can be issued.
Alternatively, you can call R64AqCleanUp and start over with R64AqSetup

BF_BAD_SIGNAL Interrupt signal unknown

BF_SIGNAL_CANCEL Interrupt signal was cancelled.

BF_WAIT_FAILED Wait for object failed.

R64_AQSTRT_TIMEOUT A time-out occurred waiting for acquisition to begin.

R64_AQEND_TIMEOUT A time-out occurred waiting for acquisition to end.

R64 Acquisition R64AqCleanUp

Version G.8 BitFlow, Inc. SDK-37-7

37.4 R64AqCleanUp

Prototype R64RC R64AqCleanUp(R64 Board)

Description Frees all resources used by the acquisition process. Makes sure the board is in a sta-
ble state.

Parameters Board

Handle to board.

Returns

Comments This function frees all of the resources that were allocated in R64AqSetup. Do not call
this function unless you have already called R64AqSetup, and unless you are finished
acquiring into the current buffer.

This function does not free the destination buffer passed to R64AqSetup in the pDest
parameter.

R64_OK In all cases.

R64AqWaitDone BitFlow SDK

SDK-37-8 BitFlow, Inc. Version G.8

37.5 R64AqWaitDone

Prototype R64RC R64AqWaitDone(R64 Board)

Description Waits for the current acquisition to complete.

Parameters Board

Handle to board.

Returns

Comments This function efficiently waits for the current acquisition to complete. The completion
is denoted by the last pixel being DMAed into memory. The function will return with a
time-out error if the acquisition has not been completed by the designated acquisi-
tion time-out amount. This time is normally set in the camera configuration file, but
can be changed in software as well, see R64BrdAqTimeoutSet. This function will
return immediately if the acquisition has already completed. This function will also
return immediately (with an error code), if the board is in a state where acquisition will
not complete without further acquisition commands.

R64_OK The current acquisition has completed.

R64_AQ_NOT_SETUP The acquisition process has not been set up yet.

R64_BAD_WAIT The board is currently in grab mode and acquisition
will not end, or there is another acquisition com-
mand pending after this one is completed.

R64_AQEND_TIMEOUT The acquisition time-out expired before the acquisi-
tion command completed.

BF_BAD_SIGNAL Interrupt signal unknown

BF_SIGNAL_CANCEL Interrupt signal was cancelled.

BF_WAIT_FAILED Wait for object failed.

R64 Acquisition R64AqProgress

Version G.8 BitFlow, Inc. SDK-37-9

37.6 R64AqProgress

Prototype R64RC R64AqProgress(R64 Board, PBFU32 pCurLine)

Description Returns the progress, in terms of line number, of the current acquisition.

Parameters Board

Handle to board.

pCurLine

A pointer to a BFU32. When the function returns this variable, it will contain the line
number currently being DMAed.

Returns

Comments This function reads the board’s registers that indicate the current DMA destination.
Based on the current camera configuration and acquisition, the line number is calcu-
lated and returned. The line number returned is the line that is currently being
DMAed. It is not safe to access the current line in memory, as it may not be com-
pletely written into memory. All lines up to the line returned can be safely accessed.
However, the function returns an instantaneous value, since the DMA process can
move data extremely fast. The value returned from this function, especially for fast
cameras, may not be current by the time the function returns.

If acquisition has not yet started, this function will indicate that the current line is line
0. This will only happen right after R64AqSetup has been called. Once the first frame
has started, the function will always indicate the current line number, or the last line in
the image if acquisition is completed. If an acquisition is pending, this function will still
return that the current line is the last line in the image until the next frame starts.

R64_OK If successful.

R64_BAD_CNF Error extracting data from the current camera config-
uration.

R64_BAD_CON_PARAM Error with the destination type.

R64AqFrameSize BitFlow SDK

SDK-37-10 BitFlow, Inc. Version G.8

37.7 R64AqFrameSize

Prototype R64RC R64AqFrameSize(R64 Board, BFU32 XSize, BFU32 YSize)

Description This function provides the ability to change the image height and image width.

Parameters Board

Handle to board.

XSize

The value to change the XSize too.

YSize

The value to change the YSize too.

Returns

Comments This function is used to change the size of the image being acquired, from software.
With this function the size of the frame can be changed on the fly, without the use of
camera files. This function is limited to use with only free run camera files, and may not
work with sophisticated camera files.

This function assumes the CTABs and control registers have already been initialized to
a working state by one of the initialization functions (e.g. R64BrdOpen). The function
uses the current state to determine how to make the requested modifications. If the
current board state is non-functional, this function will fail.

This function can be called before R64AqSetup and the new size will overwrite the
size specified by the camera file. To change the size after R64AqSetup has been
called R64AqCleanup must be called then R64AqFrameSize and R64AqSetup. The
following is an example of the order needed to change the size of the frame after
R64AqSetup has been called:

// Stop acquisition

R64_OK If successful.

R64_BAD_FRM_SIZE Invalid frame size. The frame can be too big or small,
or the XSize is not a multiple of 4.

R64_CAM_SUPPORT Cam file being used is not supported by this func-
tion.

R64_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R64_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/or
HStop.

R64_BAD_CNF_FILE Could not determine the pixels per clock from the
camera file.

R64 Acquisition R64AqFrameSize

Version G.8 BitFlow, Inc. SDK-37-11

R64AqCleanUp
R64AqFrameSize
R64AqSetup
// Begin acquisition

The minimum XSize this functions supports is 8 pixels and a minimum YSize of 1 line.
The maximum YSize and XSize is 131,072 lines and pixels. This function will return a
R64_BAD_FRM_SIZE error for any problems with the size of the frame. Another pre-
caution to take is that the XSize needs to be a multiple of the pixels per clock. Any
XSize value that is not a multiple of the pixels per clock will give a R64_BAD_FRM_
SIZE error.

It is left up to the user not to exceed the sensor size of the camera. For example if the
user is using a area scan camera with a sensor size of 640x480 and tries and make the
frame size 800x600, this function will try to acquire the 800x600 frame size even
though the camera can not provide it. The user will end up with a scrambled or unsta-
ble image.

R64AqReengage BitFlow SDK

SDK-37-12 BitFlow, Inc. Version G.8

37.8 R64AqReengage

Prototype R64RC R64AqReengage(R64 Board)

Description Re-engages the QTab into the DMA engine.

Parameters Board

Handle to board.

Returns

Comments This function is used to engage the QTab. This function only needs to be used if the
acquisition or the DMA is aborted in the middle of the frame (for example, when
using start-stop triggering).

R64_OK If successful.

R64_AQ_NOT_SETUP R64AqSetup has not yet been called and the board
is not ready for an acquisition command.

R64 Acquisition R64AqROISet

Version G.8 BitFlow, Inc. SDK-37-13

37.9 R64AqROISet

Prototype R64RC R64AqROISet(R64 Board, BFU32 XOffset, BFU32 YOffset, BFU32 XSize,
BFU32 YSize)

Description This function provides the ability to change the region of interest acquired by the
camera.

Parameters Board

Handle to board.

XOffset

The number of pixels to offset in the x-axis.

YOffset

The number of pixels to offset in the y-axis.

XSize

The value to change the XSize too.

YSize

The value to change the YSize too.

Returns

Comments This function is used to change the region of interest (ROI) of the image being
acquired from the camera, from software. With this function the ROI of the frame can
be changed on the fly, without the use of camera files. This function is limited to use
with only free run camera files, and may not work with sophisticated camera files.

R64_OK If successful.

R64_BAD_FRM_SIZE Invalid frame size. The frame can be too big or small,
or the XSize is not a multiple of 4.

R64_CAM_SUPPORT Cam file being used is not supported by this func-
tion.

R64_BAD_VCTAB Couldn’t find a valid VStart segment 0.

R64_BAD_HCTAB Couldn’t find a valid HStart segment 0 or 1 and/or
HStop.

R64_BAD_CNF_FILE Could not determine the pixels per clock from the
camera file.

R64AqROISet BitFlow SDK

SDK-37-14 BitFlow, Inc. Version G.8

This function assumes the CTABs and control registers have already been initialized to
a working state by one of the initialization functions (e.g. R64BrdOpen). The function
uses the attached camera file to determine how to make the requested modifications.
The ROI must stay within the boundaries of the attached camera sensor being use. If
the current board state is non-functional, this function will also be non-functional.

This function can be called before R64AqSetup and the new settings will overwrite
the settings specified by the camera file. To change the size after R64AqSetup has
been called, R64AqCleanup must be called then R64AqROISet and R64AqSetup. The
following is an example of the order needed to change the ROI of the frame after
R64AqSetup has been called:

// Stop acquisition
R64AqCleanUp
R64AqROISet
R64AqSetup
// Begin acquisition

The minimum XSize this functions supports is 8 pixels and a minimum YSize of 1 line.
The maximum YSize and XSize is 131,072 lines and pixels. This function will return a
R64_BAD_FRM_SIZE error for any problems with the size of the frame. Another pre-
caution to take is that the XSize needs to be a multiple of the pixels per clock. Any
XSize value that is not a multiple of the pixels per clock will give a R64_BAD_FRM_
SIZE error.

It is left up to the user to verify that the ROI dose not exceed the x and y sizes or
boundaries in the camera sensor. For example if the user is using a area scan camera
with a sensor size of 640x480 and tries and make the frame size 800x600, this function
will try to acquire the 800x600 frame size even though the camera can not provide it.
The user will end up with a scrambled or unstable image. Another example would be
if the same 640x480 camera file is used with an xsize that is less than 640 and a ysize
that is less then 480, but the x or y offset puts the ROI beyond the 640x480 borders.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-38-1

R64 Camera Configuration

Chapter 38

38.1 Introduction

One of the most powerful features of the R64 is the ability for the board to interface to an
almost infinite variety of cameras. The knowledge behind these interfaces is stored in the
camera configuration files.

The normal way a R64 application works is that the board is initialized to interface to the
camera currently attached to the board. The currently attached camera is selected in the
SysReg utility program. Normally, an application is written so that it will work with what-
ever camera is attached. The board is initialized for the currently attached camera when
R64BrdOpen is called. If an application is written this way there is no need to call any of
the functions in this chapter. However, some users may want to manage what cameras are
attached and how the user switches between them using their own software. For this rea-
son, these camera configuration functions are provided.

The normal flow for an application that wants to manage its own camera files is as follows:

R64BrdOpen
R64CamOpen
R64BrCamSetCur
// processing and acquisition
R64CamClose
R64BrdClose

If using more than one camera:

R64BrdOpen
R64CamOpen // open camera 0
R64CamOpen // open camera 1
R64BrCamSetCur // configure for camera 0
// processing and acquisition
R64BrCamSetCur // configure for camera 1
// processing and acquisition
R64CamClose // close camera 0
R64CamClose // close camera 1
R64BrdClose

R64CamOpen BitFlow SDK

SDK-38-2 BitFlow, Inc. Version G.8

38.2 R64CamOpen

Prototype R64RC R64CamOpen(R64 Board, PCHAR CamName, PR64CAM *pCam)

Description Allocates a camera configuration object, opens a camera configuration file, and loads
the file into the object.

Parameters Board

Handle to board.

CamName

The name of the camera file to open. Do not include the path. The camera file must
be in the configuration directory (see the SysReg application). For example: “BitFlow-
Synthetic-256x256-E1.r64”.

*pCam

A pointer to a camera object. The memory to hold the object is allocated in this func-
tion.

Returns

Comments This function allocates memory to hold a camera configuration object, locates the
given camera configuration file in the configuration directory, checks the file for
errors, then loads the camera configuration parameters into the camera object. The

R64_OK If successful.

R64_NO_CNFDIR_REG_
KEY

The configuration directory entry is missing in the
register (run SysReg).

R64_BAD_PATH Error building the path to the camera file.

R64_BAD_STRUCT Error calculating the size of the camera structure.

BF_BAD_ALLOC Cannot allocate memory to perform open.

R64_BAD_CNF_FILE Error opening or reading configuration file.

BF_WRONG_CAM Camera file extension is not “.r64”, wrong type of cam
file.

BF_BAD_HEADER Error in configuration file header. This could include
an error in one or more of the following items: signa-
ture (R64 configuration), endian test (endian model is
unknown), revision (camera revision is incompatible),
size (size of file is not the same as written) and CRC
(byte error in file).

BF_BAD_BINR Error reading configuration item from file.

BF_BAD_CNFA Error inserting configuration item into camera object.

R64 Camera Configuration R64CamOpen

Version G.8 BitFlow, Inc. SDK-38-3

camera object is used to tell the system how to set up the board to acquire from a par-
ticular camera. Use the programs CamVert and CamEd to edit camera configuration
files.

The resulting camera object can be passed to other functions such as R64BrdCamSet-
Cur.

The resources allocated by the function must be freed by calling R64CamClose.

R64CamInquire BitFlow SDK

SDK-38-4 BitFlow, Inc. Version G.8

38.3 R64CamInquire

Prototype R64RC R64CamInquire(R64 Board, PR64CAM pCam, BFU32 Member, PBFU32
pVal)

Description Returns information about the given camera.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Member

Characteristic to find the value of. The member must be one of:

BFCamInqXSize - width of image in pixels.
BFCamInqYSize0 - height of image in lines.
BFCamInqFormat - image format.
BFCamInqPixBitDepth - depth of pixel in bits, as acquired to host.
BFCamInqPixBitDepthDisplay - depth of pixel in bits, as acquired to dis-

play.
BFCamInqBytesPerPix - depth of pixel in bytes, as acquired to host.
BFCamInqBytesPerPixDisplay - depth of pixel in bytes, as acquired to dis-

play.
BFCamInqBitsPerSequence - depth of multi-channel pixel in bits, as

acquired to host.
BFCamInqBitsPerSequenceDisplay - depth of multi-channel pixel in bits,

as acquired to display.
BFCamInqFrameSize0 - total size of image in bytes, as acquired to host.
BFCamInqDisplayFrameSize0 - total size of image in bytes, as acquired to

display.
BFCamInqFrameWidth0 - width of image in bytes, as acquired to host.
BFCamInqDisplayFrameWidth - width of image in bytes, as acquired to

display.
BFCamInqAqTimeout - number of milliseconds to wait before acquisition

command times out.
BFCamInqCamType - camera type.
BFCamInqControlType - type of camera control accessible through API.

pVal

Pointer to value of the characteristic.

R64 Camera Configuration R64CamInquire

Version G.8 BitFlow, Inc. SDK-38-5

Returns

Comments This function is used to inquire about characteristics of a camera. For 8, 24 and 32-bit
cameras, the parameter R64CamInqFrameSize0 is equal to R64CamInqDisplayFrame-
Size0. The parameter only differs for cameras with pixels depths of more than 8 bits
per channel.

R64_OK If successful.

R64_BAD_INQ_PARAM Unknown Member parameter.

BF_BAD_CNF_PTR Invalid configuration pointer.

BF_BAD_ITEM_ID The ID of configuration item is not in configuration
structure.

BF_BAD_ID_EMPTY The configuration item is empty.

BF_DEST_TO_SMALL The configuration item is larger than the destination
area.

BF_BAD_INDEX The configuration item has a bad index parameter.

R64CamClose BitFlow SDK

SDK-38-6 BitFlow, Inc. Version G.8

38.4 R64CamClose

Prototype R64RC R64CamClose(R64 Board, PR64CAM pCam)

Description Frees resources used by a camera object.

Parameters Board

Handle to board.

pCam

Camera object.

Returns

Comments This function frees all resources used by a camera object.

R64_OK In all cases.

R64 Camera Configuration R64CamAqTimeoutSet

Version G.8 BitFlow, Inc. SDK-38-7

38.5 R64CamAqTimeoutSet

Prototype R64RC R64CamAqTimeoutSet(R64 Board, PR64CAM pCam, BFU32 Timeout)

Description Sets the acquisition timeout variable in the given camera configuration.

Parameters Board

Handle to board.

pCam

Camera whose characteristics are requested.

Timeout

New value for timeout, in milliseconds.

Returns

Comments This function sets the timeout value for an earlier configuration

R64_OK If successful.

BF_BAD_ITEM_ID The ID of configuration item is not in configuration
structure.

BF_BAD_ID_EMPTY The configuration item is empty.

BF_BAD_CNF_SIZE The configuration structure not big enough to
accommodate operation.

BF_BAD_INDEX The configuration item has a bad index parameter.

R64CamAqTimeoutSet BitFlow SDK

SDK-38-8 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-39-1

R64 Interrupt Signals

Chapter 39

39.1 Introduction

The purpose of the Signal Function calls is to make hardware interrupts available to user-
level applications in a simple and efficient set of functions. In fact, under all modern Win-
dows operating systems, there is no way for a user-level application to get direct notifica-
tion of a hardware interrupt. Only kernel-level drivers can contain interrupt service
routines (ISR). Most customers do not want to deal with the complications of writing ISRs
anyway, so BitFlow has come up with this signaling system.

A signal is a wrapper around a Windows semaphore object. The signal has a state and a
queue. Every time an interrupt occurs, the signal’s state changes. The nice thing about
signals is that you can wait for their state to change, without using any CPU cycles. This is
what makes them so efficient. This means that you can have one thread processing
images while another is waiting for the next image to be completely DMAed. The thread
that is waiting for the signal consumes very little CPU time, thus making most of the CPU
available for processing.

The way these functions are used is that you start by creating a signal with the R64Signal-
Create. There are a number of different interrupts that the signal can wait for, and it is in
this function that you specify the one you want. Once the signal is created, your applica-
tion waits for the interrupt with either the R64SignalWait or the R64SignalWaitNext func-
tion. The difference being the R64SignalWait function uses a signals queue. If an interrupt
has occurred before this function is called, then this function will return immediately. It will
continue to return immediately until there are no more interrupts in the queue. The
R64SignalWaitNext function always waits for the next interrupt after being called, regard-
less of how many have occurred since it was last called.

Signals can be used in a single thread application, but whenever one of the wait functions
is called, execution will be blocked until the interrupt occurs. Because this situation can
potentially hang a process, a timeout parameter is provided for all of the wait functions. If
you need an application to process data while waiting on an image to be captured, create
a separate thread to call the wait function. Meanwhile, another thread can be processing
with most of the CPUs cycles. A thread waiting on a signal can be cancelled with the func-
tion R64ThreadCancel. This causes the waiting thread to return from the wait function with
an error code indicating that it has been cancelled.

The following pseudo-code illustrates how these functions can be called:

Introduction BitFlow SDK

SDK-39-2 BitFlow, Inc. Version G.8

Int ImageIn = 0
main ()
{

R64BrdOpen// open board
R64SignalCreate// create the signal for EOF
CreateThread(EOFThread)// create a thread
while (KeepProcessing)// main processing loop
{

// here we loop until we have an image
while (ImageIn !=1)
{

// secondary processing
}

// now we have an image so process it

ImageIn = 0 // reset variable

// primary image processing

}
}

// clean up
R64SignalCancel// cancel signal kill thread
R64SignalFree// free signal resources
R64BrdClose// close board

}

// thread to watch for end of frame
EOFThread()
{

loop
{

rv = R64SignalWait // wait for signal
if(rv == CANCELED) // cancel?

exit loop // yes, kill this thread else
else

ImageIn = 1 // no, set new image flag
}

}

R64 Interrupt Signals R64SignalCreate

Version G.8 BitFlow, Inc. SDK-39-3

39.2 R64SignalCreate

Prototype R64RC R64SignalCreate(R64 Board, BFU32 Type, PR64SIGNAL pSignal)

Description Creates a signal that will allow user level thread to be notified of hardware interrupts.

Parameters Board

Handle to board.

Type

Type of interrupt signal to create. Must be one of the following:

BFIntTypeHW - hardware exception.
BFIntTypeFIFO - video FIFO overflow.
BFIntTypeCTab - interrupt bit in VCTAB is set.
BFIntTypeEOD - End of DMA. Occurs when the last pixel has been DMAed

into memory. Users will create this signal most of the time.
BFIntTypeEOF - End of frame from the acquistion.
BFIntTypeSerial - Serial communication.
BFIntTypeTrig - Interrupt on every trigger pulse.

pSignal

Pointer to R64SIGNAL structure.

Returns

Comments This function creates a signal object that is used to receive interrupt notifications from
the R64. The R64SignalWaitXXXX function takes a signal as a parameter. These func-
tions efficiently wait for an interrupt of the given type to occur. The best way to use a
signal is to create a separate thread that calls one of the R64SignalWaitXXXX func-
tions. This thread will consume minimal CPU cycles until the interrupt occurs. When
the interrupt occurs, the signal is notified and the R64SignalWaitXXXX functions will
return. The thread can then take appropriate action, calling whatever functions are
necessary and/or send messages to the main application thread.

This signaling system is the only way to handle R64 interrupts at the user application
level.

R64_OK If successful.

BF_BAD_SEMAPHORE Could not get semaphore object from operating sys-
tem.

BF_BAD_ALLOC Could not allocate memory for signal.

BF_BAD_ARGS Invalid type of interrupt.

R64SignalCreate BitFlow SDK

SDK-39-4 BitFlow, Inc. Version G.8

More than one signal can be created for the same interrupt on the same board. Also,
more than one process and/or thread can wait for the same interrupt. When the inter-
rupt occurs, all of the signals will be notified in the order they were created. The signal
created by this function receives interrupt notification only from the R64 passed to this
function in the Board parameter.

The most frequently used signal is Type = R64IntTypeEOD. The R64AqSetup function
automatically sets the interrupt bit in the last quad in the QTab of the current image.
This signal will be notified when the last pixel of the image has been DMAed into
memory, and the current acquisition is done in the case of a snap or freeze.

The signal created by this function must be cleaned up by calling R64SignalFree.

R64 Interrupt Signals R64SignalWait

Version G.8 BitFlow, Inc. SDK-39-5

39.3 R64SignalWait

Prototype R64RC R64SignalWait(R64 Board, PR64SIGNAL pSignal, BFU32 TimeOut, PBFU32
pNumInts)

Description Efficiently waits for an interrupt to occur. Returns immediately if one has occurred
since the function was last called.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL previously created by R64SignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout.

pNumInts

Pointer to a BFU32. When the function returns, it will contain the number of interrupts
(the interrupt queue) that have occurred since this function was last called.

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function will return immediately if the interrupt
has occurred since the function was last called with this signal. The first time this func-
tion is called with a given signal, it will always wait, even if the interrupt has occurred
many times in the threads lifetime.

When this function returns, the pNumInts parameter will contain the number of inter-
rupts that have occurred since this function was last called. This is essentially an inter-
rupt queue. Normally this will be zero. However, if one or more interrupts have
occurred, the function will return immediately and this variable will indicate the num-
ber that has occurred. This parameter is useful in determining if frames were missed.

R64_OK Interrupt has occurred.

BF_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

BF_SIGNAL_CANCEL Signal was canceled by another thread (see R64Sig-
nalCancel).

BF_BAD_SIGNAL Signal has not been created correctly or was not cre-
ated for this board.

BF_WAIT_FAILED Operating system killed the signal.

R64SignalWait BitFlow SDK

SDK-39-6 BitFlow, Inc. Version G.8

This function will continue to return immediately, reducing the number of interrupts in
the queue each time until every interrupt that has occurred has been acknowledged,
and the queue is empty.

To wait for the next interrupt and ignore any previous interrupts, use R64SignalWait-
Next.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

R64 Interrupt Signals R64SignalNextWait

Version G.8 BitFlow, Inc. SDK-39-7

39.4 R64SignalNextWait

Prototype R64RC R64SignalNextWait(R64 Board, PR64SIGNAL pSignal, BFU32 TimeOut)

Description Like R64SignalWait, this function waits efficiently for an interrupt. However, this ver-
sion always ignores any interrupts that might have occurred since it was called last,
and just waits for the next interrupt.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL previously created by R64SignalCreate.

TimeOut

Number of milliseconds to wait for the signal to occur before returning with a timeout
error. Set to INFINITE to never timeout

Returns

Comments This function efficiently waits for an interrupt to occur. While the function is waiting, it
consumes minimal CPU cycles. This function waits for the next interrupt, regardless of
the number of interrupts in the signal’s queue. The first time this function is called with
a given signal, it will always wait, even if the interrupt has occurred many times in the
threads lifetime.

Use R64SignalWait if you need a function that will return immediately if an interrupt
has already occurred.

The TimeOut parameter is only as accurate as the high-level operating system clock.
On Intel platforms this is usually  10 milliseconds.

R64_OK Interrupt has occurred.

BF_SIGNAL_TIMEOUT Timeout has expired before interrupt occurred.

BF_SIGNAL_CANCEL Signal was canceled by another thread (see R64Sig-
nalCancel).

BF_BAD_SIGNAL Signal has not been created correctly or was not cre-
ated for this board.

BF_WAIT_FAILED Operating system killed the signal.

R64SignalCancel BitFlow SDK

SDK-39-8 BitFlow, Inc. Version G.8

39.5 R64SignalCancel

Prototype R64RC R64SignalCancel(R64 Board, PR64SIGNAL pSignal)

Description Cancels a signal, any R64SignalWaitXXX function will return with a value of R64_SIG-
NAL_CANCEL.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL to cancel.

Returns

Comments This function will cancel a signal. It is primarily used by multi-threaded applications
where one thread is waiting (with one of the R64SignalWaitXXXX functions) for a sig-
nal. Another thread can cancel the signal with this function, thereby waking up the
waiting thread. When the waiting thread wakes up and the R64SignalWaitXXXX func-
tion returns, the return value can be examined. If the return value is BF_SIGNAL_CAN-
CEL, the thread knows that the signal it was waiting for was canceled, and it can take
appropriate action.

This function is usually used as a clean way for the main application thread to tell wait-
ing threads to kill themselves.

Canceling a signal with this function will interfere with its internal interrupt counts.
Therefore, this function should only be called when synchronization with the interrupt
is no longer important and/or the signal is going to be destroyed.

R64_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

R64 Interrupt Signals R64SignalQueueSize

Version G.8 BitFlow, Inc. SDK-39-9

39.6 R64SignalQueueSize

Prototype R64RC R64SignalQueueSize(R64 Board, PR64SIGNAL pSignal, PBFU32 pNumInts)

Description Reports the current number of interrupts in a signal’s queue.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL whose queue is to be investigated.

pNumInts

Pointer to BFU32. When the function returns pNumInts, it will contain the number of
interrupts in the signal’s queue.

Returns

Comments This function returns the number of interrupts in a signal’s queue. This function is use-
ful for testing to see if any interrupts have come in for a given signal, when you do not
want to call one of the R64SignalWaitXXX functions. This function can be called any
time.

R64_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

R64SignalQueueClear BitFlow SDK

SDK-39-10 BitFlow, Inc. Version G.8

39.7 R64SignalQueueClear

Prototype R64RC R64SignalQueueClear(R64 Board, PR64SIGNAL pSignal)

Description Clears interrupts from a single queue.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL whose queue is to be investigated.

Returns

Comments This function clears all of the interrupts for a given signal’s queue. This allows a thread
to wait for the next interrupt to occur. This function is usually only used to re-synchro-
nize a signal to the current state of acquisition (i.e., ignore any interrupts that have
occurred in the past) before calling R64SignalWait. To always wait for the next inter-
rupt, call R64SignalWaitNext.

R64_OK If successful.

BF_BAD_SIGNAL Signal does not exist.

BF_WAIT_FAILED Error clearing queue.

R64 Interrupt Signals R64SignalFree

Version G.8 BitFlow, Inc. SDK-39-11

39.8 R64SignalFree

Prototype R64RC R64SignalFree(R64 Board, PR64SIGNAL pSignal)

Description Frees all resources used by a signal.

Parameters Board

Handle to board.

pSignal

Pointer to R64SIGNAL whose queue is to be investigated.

Returns

Comments This function frees the resources used by a signal and removes it from the list of sig-
nals that get interrupt notification.

R64_OK In all cases.

BF_BAD_SIGNAL Signal does not exist.

R64SignalFree BitFlow SDK

SDK-39-12 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-40-1

R64 Quad Table Functions

Chapter 40

40.1 Introduction

For almost all R64 applications there will be no need to call any of the functions in this
chapter. These are considered mid-level functions and are generally only called indirectly
by other, high level, functions. These functions are listed here in case some specialized
programming of the R64 is required.

Quad Tables (or QTABS) are simple scatter gather DMA tables. A scatter gather DMA
table is a list of instructions that tell the R64 how to DMA images to host. The name quad
comes from the fact that each DMA instruction consists of four, 32-bit words: DMA source,
DMA destination, DMA size, and a pointer to the next DMA instruction.

The R64 API is very similar to many of the other APIs in this manual. However, the QTab
create function is one area where they differ. The primary difference is that the other mid-
level APIs require two QTab functions be called, one to create relative QTabs and another
to create physical QTabs. With the introduction of the R64 API, these two operations have
been collapse into a single QTab creation operation, R64QTabCreate.

R64QTabCreate BitFlow SDK

SDK-40-2 BitFlow, Inc. Version G.8

40.2 R64QTabCreate

Prototype R64RC R64QTabCreate(R64 Board, PR64CAM pCam, PBFVOID pDest, BFU32 Buf-
ferSize, BFS32 Stride, VQTabHeadPtr pVirtQTabHead, BFU32 DestType, BFU32
Options)

Description Builds a QTab, used for acquisition from a given camera type to a host memory buffer.

Parameters Board

Handle to board.

pCam

Camera object of the type to build the QTab for.

pDest

A void pointer to the destination buffer.

BufferSize

The size (in bytes) of the destination buffer. This should be the size that was used in
the allocation of the buffer.

Stride

The line pitch of the destination buffer. The line pitch is the amount, in pixels, a
pointer would have to be increased to move to the next line. Normally, this number is
equal to the X size of the image. This value can be negative for images that need to
be loaded upside down. When acquiring to host memory, this value can be zero, and
the function will calculate the Stride for you.

pVirtQTabHead

Pointer to an allocated VQTabHeadPtr structure.

DestType

Type of destination memory:

BFDMADataMem - host memory
BFDMABitmap - display memory

Options

Options for building the QTab. Can be one or more of:

0 - No special options.
BFOptPhysicalMemory - The destination address is physical memory and

does not need to be locked down.

R64 Quad Table Functions R64QTabCreate

Version G.8 BitFlow, Inc. SDK-40-3

Returns

Comments This function builds a QTab for acquisition of a given camera type into a host memory
buffer. The QTab is a table of scatter-gather DMA instructions that the R64 uses to
continuously (and without host intervention) DMA camera data to the host memory.

This is a mid-level function and should not be called except for custom programming
of the R64. The high-level function R64AqSetup will call this function for you.

Depending on the camera, this function may take a moderate amount of time to cal-
culate the QTab. This function should only be called once, for a given camera and
destination. The QTab can be used repeatedly to acquire from the same camera type
into the same memory buffer.

This function allocates memory to hold the QTab in the users address space. Call
R64QTabFree to release this and other resources allocated in this function.

R64_OK If successful.

R64_BAD_CNF Error extracting information from the camera object.

R64_BAD_MODEL The camera configuration contains a QTab model or
format that is not understood by this version of the
SDK. Or, the camera configuration is such that the
QTab cannot be built.

R64_BAD_CON_PARAM One of the parameters is incorrect.

BF_BAD_ALLOC Cannot allocate enough memory to build QTab.

BF_BAD_CON_PARAM One of the parameters is incorrect.

BF_BAD_ROI Error calculating QTab for ROI

R64QTabFree BitFlow SDK

SDK-40-4 BitFlow, Inc. Version G.8

40.3 R64QTabFree

Prototype R64RC R64QTabFree(R64 Board, VQTabHeadPtr pVirtQTabHead)

Description Frees resources allocated in R64QTabCreate.

Parameters Board

Handle to board.

pVertQTabHead

Pointer to VQTabHead structure previously passed to R64QtabCreate.

Returns

Comments This function releases the memory used to hold the QTab and any other resources
allocated in R64QTabCreate.

R64_OK In all cases.

R64 Quad Table Functions R64QTabEngage

Version G.8 BitFlow, Inc. SDK-40-5

40.4 R64QTabEngage

Prototype R64RC R64QTabEngage(R64 Board, VQTabHeadPtr pVirtQTabHead)

Description Sets the board up to use the given QTab for the next DMA operation.

Parameters Board

Handle to board.

pVirtQTabHead

A pointer to a QTab head structure. This should be the QTab for the host memory buf-
fer that will be acquired into when the next acquisition command occurs.

Returns

Comments This function engages the QTab pRelQTabHead so that the board will use this QTab
for subsequent DMA operations. This is a mid level function which is not need if the
high level functions (e.g. R64AqSetup) are being used to set up DMA.

This function is used when building QTABs using the R64QTabCreate functions. The
normal order of function calls is as follows

R64QTabCreate
R64QTabEngage
R64ConDMACommand

This function must be called before DMA is started.

R64_OK If successful.

BF_NULL_POINTER Invalid pRelQTabHead pointer.

BF_QUAD_OVERWRITTEN Attempting to engage a QTab when on has already
been engaged.

BF_QUAD_NOT_WRITTEN QTab has not been written to board

BF_QUAD_GOING Attempt to engage QTab when board is DMAing.

BF_BAD_CHAIN Attempting to select a frame number when there is
only one QTab.

BF_BAD_FRAME Requested frame is not in chain.

R64QTabChainLink BitFlow SDK

SDK-40-6 BitFlow, Inc. Version G.8

40.5 R64QTabChainLink

Prototype R64R64RC R64QTabChainLink(R64 Board, RQTabHeadPtrPtr ChainArray, BFU32
NumInChain)

Description Chains together a number of QTABs for sequential acquisition in host QTab mode.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which describe an set of buffers to be acquired into. The
buffers will be filled in the order that their QTABs appear in this array.

NumInChain

The total number of QTab headers in the QTab chain array.

Returns

Comments This function effectively sets the board up for continuous acquisition into a sequence
of host buffers. Each buffer in is DMAed into in turn, when the last buffer in the chain is
filled, the board will DMA the next frame into the first buffer. In other words the chain
describes a circular buffer.

The parameter ChainArray is an array of pointer to QTab headers. The QTab must
already be created by calling R64QTabCreate. After this function returns successfully,
the chain must be engaged by calling R64QTABChainEngage function. The normal
calling sequence for this function would be as follows:

R64QTabCreate
R64QTabChainLink
R64QTabChainEngage
R64ConDMACommand
R64ConAqCommand

In the scenario above, no data will move until an acquisition command is sent to the
board and the camera sends a frame to the board. Once data is flowing, the board
will fill each buffer as the data comes in. Once the last buffer in the chain is filled, the
board will continue starting with the first buffer. No host interaction is required for this
process to work. The board will send a signal every frame to tell your application
when a frame is complete (use R64SignalWait).

R64_OK If successful.

Non-zero If unsuccessful.

R64 Quad Table Functions R64QTabChainBreak

Version G.8 BitFlow, Inc. SDK-40-7

40.6 R64QTabChainBreak

Prototype R64RC R64QTabChainBreak(R64 Board, RQTabHeadPtrPtr ChainArray)

Description Release QTABs from a chain so that they can be reused to build a subsequent chain.

Parameters Board

Handle to board.

ChainArray

A array of pointers to QTABs which has been already passed to R64QTabChainCre-
ate.

Returns

Comments This function is used to release the QTABs that are used by a chain. When a chain is
built the QTABs that make it up are modified for use in the chain. If these QTABs need
to be used again, the chain must first be broken with this function. After this function is
called, the individual QTABs can be use to build another chain, presumable in a dif-
ferent order.

There is no need to call this function during cleanup if the individual QTABs are not
going to be used again.

R64_OK If successful.

Non-zero If unsuccessful.

R64QTabChainEngage BitFlow SDK

SDK-40-8 BitFlow, Inc. Version G.8

40.7 R64QTabChainEngage

Prototype R64RC R64QTabChainEngage(R64 Board, RQTabHeadPtrPtr ChainArray, BFU32
FrameNum)

Description Takes a successfully created chain and sets the board up to use it.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to R64QTabChainCreate.

FrameNum

The buffer number of the first frame in the chain to be acquired into.

Returns

Comments After a chain is created using R64QTabChainCreate, the chain must be engaged
using this function in order for the board to use it. Creating a chain is not a real time
operation and should be done off line. If more than one chain is required, they should
all be created first, then this function can be used to select which chain will be
acquired into first.

See R64QTabChainCreate for more information.

R64_OK If successful.

Non-zero If unsuccessful.

R64 Quad Table Functions R64QTabChainProgress

Version G.8 BitFlow, Inc. SDK-40-9

40.8 R64QTabChainProgress

Prototype R64RC R64QTabChainProgress(R64 Board, RQTabHeadPtrPtr ChainArray, PBFU32
pFrameNum, PBFU32 pLineNum)

Description Returns the line number and frame number of current image being DMAed.

Parameters Board

Handle to board.

ChainArray

This is an array of pointers to QTABs which describe an set of buffers to be acquired
into. This parameter must first be passed to R64QTabChainCreate.

pFrameNum

Pointer to receive the number of the current frame being DMAed into.

pLineNum

Pointer to receive the number of the current line being DMAed.

Returns

Comments This function is used to check the progress of acquisition while the board is acquiring
using a chain. The function will return both the line number and the frame number.
This function is fairly computationally intensive and should not be called in a tight
loop to monitor progress. This function is best used intermittently to check progress,
for example, it can be interleaved with processing.

The best way to overlap acquisition and processing is to create a signal that waits for
the quad done signal (end of frame interrupt). Once the signal is asserted, the CPU
can freely process the entire frame.

If you need to monitor the boards progress using a tight loop, read the VCOUNT reg-
ister. Reading a register uses much less CPU time. Even in this case, you should put a
sleep in your loop to not overwhelm the board with register reads (which take prece-
dence over DMAing). Again is it better to interleave processing and checking
VCOUNT.

R64_OK If successful.

R64_BAD_CNF Error extracting information from camera configura-
tion file.

R64_BAD_CON_PARAM Invalid function parameter.

R64ChainSIPEnable BitFlow SDK

SDK-40-10 BitFlow, Inc. Version G.8

40.9 R64ChainSIPEnable

Prototype R64RC R64ChainSIPEnable(R64 Board, RQTabHeadPtrPtr ChainArray)

Description Enables start-stop interrupt processing (SIP).

Parameters Board

Handle to board.

ChainArray

Structure holding information about QTab.

Returns

Comments This function enables start-stop interrupt processing (SIP). This processing is used to
reset the DMA engine in a kernel interrupt service routine.

When the board is in start-stop mode, the DMA is terminated before the frame is
completely acquired. This termination leaves the DMA engine in an unknown state.
The DMA engine must be reset and setup for the next host buffer before the next
frame starts. Ordinarily this reset is performed by the application at the user level.
However, in the case of a multi threaded application, the reset thread may not be able
to reset the DMA engine before the beginning of the next frame (because of CPU
load and thread priorities). To solve this problem the BitFlow SDK implements a DMA
engine reset in the kernel level interrupt service routine. This code has higher priority
than any user level threads. The latency and execution time of the SIP reset is mini-
mized thus reducing the required minimum time between frames. This function turns
on this functionality.

SIP only works (and is only required) when the board is in start-stop triggering mode
(variable size image acquisition) and when a host QTab chain has been created and
engaged. This function must be called before acquisition has started but after the
QTab chain is created. This function enable the SIP resetting of the DMA engine, you
must call R64ChainSIPDisable to turn the SIP off. This SIP is based on the CTAB inter-
rupt (vertical CTAB column IRQ) which must have an interrupt at location zero.

The example application Flow demonstrates usage of this function.

R64_OK If successful.

Non-zero On error.

R64 Quad Table Functions R64ChainSIPDisable

Version G.8 BitFlow, Inc. SDK-40-11

40.10 R64ChainSIPDisable

Prototype BFRC R64ChainSIPDisable(R64 BoardId, RQTabHeadPtrPtr ChainArray)

Description Disables Start-Stop Interrupt Processing mode.

Parameters Board

Board ID.

ChainArray

Structure holding information about QTab.

Returns

Comments See R64ChainSIPEnable for details.

BF_OK Function succeeded.

Non-zero Function failed.

R64ChainSIPDisable BitFlow SDK

SDK-40-12 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-41-1

R64 Mid-Level Control Functions

Chapter 41

41.1 Introduction

These functions are used to control the board at a lower level than the R64AqCommand
function. In general, an application should not need to use these functions unless special
circumstances exist. These functions talk directly to the hardware and make no assump-
tions about how the rest of the board is set up. Generally, it is a bad idea to mix high-level
functions and these mid-level functions.

R64ConAqCommand BitFlow SDK

SDK-41-2 BitFlow, Inc. Version G.8

41.2 R64ConAqCommand

Prototype R64RC R64ConAqCommand(R64 Board, BFU32 Command)

Description Sends an acquisition command to the board.

Parameters Board

Handle to board.

Command

Command send to board:

BFConSnap - snap one frame.
BFConGrab - start continuous acquisition.
BFConFreeze - stop continuous acquisition at the end of the current frame.
BFConAbort - stop acquisition immediately.

Returns

Comments This function sends an acquisition command directly to the hardware. This is a low-
level function and makes no assumptions about the state of the rest of the board.

This command returns immediately.

R64_OK If successful.

R64_BAD_CON_PARAM Unknown Command parameter.

R64 Mid-Level Control Functions R64ConAqStatus

Version G.8 BitFlow, Inc. SDK-41-3

41.3 R64ConAqStatus

Prototype R64RC R64ConAqStatus(R64 Board, PBFU32 pStatus)

Description Gets the current acquisition state of the board.

Parameters Board

Handle to board.

pStatus

Pointer to BFU32. When this function returns it contains the status of the board. The
status will be one of the following:

BFConFreeze - the board is not acquiring.
BFConSnap - the board is currently acquiring one frame.
BFConGrab - the board is currently in continuous acquisition mode.

Returns

Comments This function returns the current acquisition status of the board.

R64_OK In all cases

R64ConAqMode BitFlow SDK

SDK-41-4 BitFlow, Inc. Version G.8

41.4 R64ConAqMode

Prototype R64RC R64ConAqMode(R64 Board, BFU32 DestType)

Description For a given destination type, this function sets the board’s acquisition registers, based
on the current camera type.

Parameters Board

Handle to board.

DestType

Type of acquisition to prepare for:

BFDMABitmap - the destination buffer to be used for display.
BFDMADataMem - the destination buffer needs to contain raw data.

Returns

Comments This function sets up the R64’s front end acquisition paths for acquiring to a display
buffer or a raw data buffer. A display buffer is one that will be used for display on a
monitor, and is 8, 24 or 32 bits deep. A raw data buffer is one that the data has the
same bit depth as the camera.

This function has no effect for 8, 24 or 32-bit cameras.

This function is normally called automatically by R64AqSetup, and does not need to
be called explicitly by an application. An unpredictable result will occur if this function
is called while the board is acquiring.

R64_OK If successful.

R64_BAD_CON_PARAM Unknown DestType parameter.

R64 Mid-Level Control Functions R64ConInt

Version G.8 BitFlow, Inc. SDK-41-5

41.5 R64ConInt

Prototype R64RC R64ConInt(R64 Board, BFU32 IntType, BFU32 Action)

Description Disables or enables individual hardware interrupts.

Parameters Board

Handle to board.

IntType

Type of interrupt:

BFIntTypeHW - hardware exception.
BFIntTypeFIFO - video FIFO overflow.
BFIntTypeCTab - interrupt bit in VCTAB is set.
BFIntTypeEOD - End of DMA. Occurs when the last pixel has been DMAed

into memory. Users will create this signal ninety percent of the time.
BFIntTypeEOF - End of frame from the acquistion.
BFIntTypeSerial - Serial communication.
BFIntTypeTrig - Interrupt on every trigger pulse.

Action

Indicates whether to enable or disable the interrupt:

BFConEnable - enable the interrupt.
BFConDisable - disable the interrupt.

Returns

Comments This function enables or disables the specified hardware interrupt for being invoked
on the PCI bus. The driver always has an interrupt service (ISR) routine ready to han-
dle any interrupts that come in. The driver’s ISR will automatically reset the appropri-
ate interrupt bits on the board when an interrupt occurs.

To receive notification of interrupts at the user application level, use the signaling sys-
tem (see the R64SignalXXXX functions). These functions automatically enable the
appropriate interrupt when the signal is created, so you do not have to call this func-
tion to use an interrupt with the signaling system. However, you can use this function
to enable and disable interrupts, based on your application needs, without creating
and destroying signals. As a general rule, you should disable any interrupts that you
are not using. Every interrupt uses a certain amount of CPU time, even if no applica-
tion is waiting for it.

When the board is initialized, by default, all interrupts are turned off.

R64_OK If successful.

R64_BAD_CON_PARAM Either the parameter IntType or Action is unknown.

R64ConDMACommand BitFlow SDK

SDK-41-6 BitFlow, Inc. Version G.8

41.6 R64ConDMACommand

Prototype R64RC R64ConDMACommand(R64 Board, BFU32 Command, BFU32 Mode)

Description Issues a DMA command to the board.

Parameters Board

Handle to board.

Command

DMA command to issue:

BFConDMAGo - start the DMA engine.
BFConDMAAbort - immediately abort the current DMA operation.

Mode

Behavior of this function once the command is issued:

BFConWait - wait for current command to be implemented.
BFConAsync - return as soon as command is issued.

Returns

Comments This function sends a DMA command to the board. If the Command = R64ConD-
MAGo, this will tell the board to start DMAing. No data will actually be moved until an
acquisition command has been issued. The best way to use the R64’s DMA engine is
to start the DMA and leave it on all the time. Then, control the time when data gets
moved to the host by using the acquisition commands.

The command R64ConDMAAbort will stop DMA immediately. This is actually a faster
way to stop moving data than aborting acquisition. If acquisition is aborted the board
will still DMA until the DPM is empty. Call this function with Command = R64ConD-
MAGo, when ready to start DMAing again.

This function is automatically called by R64AqSetup, and does not normally need to
be called by the applications.

R64_OK If successful

R64_AQ_NOT_SETUP R64AqSetup has not yet been called and the board
is not ready for an acquisition command.

R64_BAD_CON_PARAM Unknown command.

R64_TIMEOUT Timeout waiting for command to complete. This is
only possible if Mode = R64ConWait.

R64 Mid-Level Control Functions R64ConDMACommand

Version G.8 BitFlow, Inc. SDK-41-7

If this function is called with Mode = R64ConWait, the function will not return until the
command has been implemented. Table 41-1 lists what the function will wait for.

When Mode = R64ConWait, this function does not efficiently wait, it polls the DMA
registers for completion. This is necessary since none of the above conditions causes
an interrupt. If the command has not completed before the DMA timeout has expired,
the function will return with a timeout error. This DMA timeout is set using the SysReg
utility.

Table 41-1 Function Waiting

Command Waits for…

R64ConDMAGo DMA engine to get ready for DMA (this is a negligi-
ble amount of time).

R64ConDMAAbort DMA engine to abort current transfer.

R64DMAProgress BitFlow SDK

SDK-41-8 BitFlow, Inc. Version G.8

41.7 R64DMAProgress

Prototype R64RC R64DMAProgress(R64 Board, RQTabHeadPtr pRelQTabHead, PBFU32 pBy-
tesAqed)

Description Returns the instantaneous number of bytes that have been DMAed so far in the cur-
rent image.

Parameters Board

Handle to board.

pRelQTabHead

Pointer to QTABHEAD structure already filled out.

pBytesAqed

Pointer to BFU32. When the function returns it will contain the number of bytes that
have been DMAed.

Returns

Comments This function returns the number of bytes of the current image that have been DMAed
so far. The returned value is an instantaneous value that is accurate at the moment the
board was checked. Since DMA can occur very quickly, the returned value may not
be accurate for a very long. The value returned is also approximate, the granularity
depends on the number of bytes transferred per quad (individual DMA instruction),
which can vary from quad to quad. As a rule of thumb, this function usually is accurate
to plus or minus one line’s worth of bytes.

Calling this function in a loop is not a very efficient way to wait for a frame to be
acquired. Use the signaling system instead. This function can be used to check the
progress of the DMA and to find out how much new data is in the host memory.

R64_OK If successful.

Non-zero If unsuccessful.

R64 Mid-Level Control Functions R64Shutdown

Version G.8 BitFlow, Inc. SDK-41-9

41.8 R64Shutdown

Prototype R64RC R64Shutdown(R64 Board)

Description Aborts all DMA activity and acquisition on the board.

Parameters Board

Handle to board.

Returns

Comments This functions aborts all activity on the board. DMA is aborted. Acquisition is aborted.
The board stops what it is currently doing and gets it ready for more acquisition. Nor-
mally this function does not need to be called.

R64_OK In all cases.

R64ConIntModeSet BitFlow SDK

SDK-41-10 BitFlow, Inc. Version G.8

41.9 R64ConIntModeSet

Prototype R64RC R64ConIntModeSet(R64 Board, BFU32 Mode)

Description Sets the interrupt mode for the board.

Parameters Board

Handle to board.

Mode

The R64 has two interrupt modes:

BFIntModeDefault - Interrupts happen continually.

BFIntModeEOFAq - End of frame interrupts happen only when acquisition has
started. The will be no interrupts during a freeze of acquisition.

Returns

Comments This function puts the board in a mode that is most useful when the board is in start-
stop mode. When the board is in start-stop mode end of frame (EOF) interrupts are
raised every time the trigger is de-asserted, even if the board is not currently acquir-
ing. This can cause problems in applications that are tracking this interrupt. The solu-
tion to this problem is to use this function to put the board into BFInModeEOFAq. In
this mode, the board only issues the EOF interrupt when the trigger de-asserts and
the board is in grab mode.

R64_OK In all cases.

R64 Mid-Level Control Functions R64ConIntModeGet

Version G.8 BitFlow, Inc. SDK-41-11

41.10 R64ConIntModeGet

Prototype R64RC R64ConIntModeGet(R64 Board, PBFU32 Mode)

Description Gets the interrupt mode for the board.

Parameters Board

Handle to board.

Mode

The interrupt mode returned can be one of the following:

BFIntModeDefault - Interrupts happen continually.

BFIntModeEOFAq - End of frame interrupts happen only when acquisition has
started. The will be no interrupts during a freeze of acquisition.

Returns

Comments See the function R64ConIntModeSet for more information.

R64_OK In all cases.

R64LutPeek BitFlow SDK

SDK-41-12 BitFlow, Inc. Version G.8

41.11 R64LutPeek

Prototype BFU32 R64LutPeek(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr)

Description Reads a single LUT value.

Parameters Board

R64 board ID.

Mode

This parameter is ignored.

Bank

LUT bank:

BFLutBank0 - peek LUT bank 0.
BFLutBank1 - peek LUT bank 1.
BFLutBank2 - peek LUT bank 2.
BFLutBank3 - peek LUT bank 3.

Lane

One or more LUT lanes ORed together:

BFLutLane0 - peek LUT lane 0. Returned value will be 8 bits.
BFLutLane1- peek LUT lane 1. Returned value will be 8 bits.
BFLutLane2 - peek LUT lane 2. Returned value will be 8 bits.
BFLutLane3 - peek LUT lane 3. Returned value will be 8 bits.
BFLutTwoLanes - peek LUT lanes 0 and 2. Returned value will be 32 bits.
BFLutFourLanes - peek LUT lanes 0, 1, 2 and 3. Returned value will be 32

bits.

Addr

LUT address to read. Must be in the range 0 to 256.

Returns The LUT value. Bit depth of the returned value will depend on the Lane parameter.

Comments In order to use this function special firmware is needed to implement the look up
table on the board. The LUT on the R64 has two banks, each consists of four lanes of
8-in/8-out look-up-tables.

R64 Mid-Level Control Functions R64LutPoke

Version G.8 BitFlow, Inc. SDK-41-13

41.12 R64LutPoke

Prototype R64RC R64LutPoke(RdRn Board, BFU8 Mode, BFU8 Bank, BFU8 Lane, BFU32 Addr,
BFU32 Value)

Description Writes a single LUT value to one or more LUT lanes.

Parameters Board

R64 board ID.

Mode

This parameter is ignored.

Bank

LUT bank:

BFLutBank0 - poke LUT bank 0.
BFLutBank1 - poke LUT bank 1.

Lane

One or more LUT lanes ORed together:

BFLutLane0 - poke LUT lane 0.
BFLutLane1- poke LUT lane 1.
BFLutLane2 - poke LUT lane 2.
BFLutLane3 - poke LUT lane 3.
BFLutTwoLanes - poke LUT lanes 0 and 2.
BFLutFourLanes - poke LUT lanes 0, 1, 2 and 3.

Addr

LUT address to write. Must be in the range 0 to 256.

Value

Value to write to LUT location Addr. Only the 8 MSBs of Value will be used.

Returns

Comments In order to use this function special firmware is needed to implement the look up
table on the board. The LUT on the R64 has two banks, each consists of four lanes of
8-in/8-out look-up-tables.

R64_OK Function succeeded.

R64ConGPOutSet BitFlow SDK

SDK-41-14 BitFlow, Inc. Version G.8

41.13 R64ConGPOutSet

Prototype R64RC R64ConGPOutSet(R64 Board, BFU32 GPout, BFU32 Level)

Description Sets the bits on the General Purpose Output registers.

Parameters Board

Handle to board.

GPout

Type of GPOut (GPOuts may be or’ed together - BFGPOut0|BFGPOut1):

BFGPOut0 - Set the the value of GPOut0.
BFGPOut1 - Set the the value of GPOut1.
BFGPOut2 - Set the the value of GPOut2.
BFGPOut3 - Set the the value of GPOut3.
BFGPOut4 - Set the the value of GPOut4.
BFGPOut5 - Set the the value of GPOut5.
BFGPOut6 - Set the the value of GPOut6.

Level

The level to set the bit(s) too. This value can be either a 0 or 1.

Returns

Comments

R64_OK If successful.

R64_BAD_CON_PARAM Level was not a 0 or a 1.

R64_BAD_GPOUT A invalid GPout value was passed into the function.

R64_CON_GPOUT_BAD The setting of the register value failed.

R64 Mid-Level Control Functions R64ConGPOutGet

Version G.8 BitFlow, Inc. SDK-41-15

41.14 R64ConGPOutGet

Prototype R64RC R64ConGPOutGet(R64 Board, PBFU32 Value)

Description Returns the value of the all the general purpose output bits.

Parameters Board

Handle to board.

Value

A pointer to the value of the GPOut bits.

Returns

Comments Each digit in Value represents a GPOut, GPOut0 being the right most digit. For exam-
ple, if Value has a value of 0x0000007e all the GPOuts have a value of 1 except
GPOut0 which has a value of 0.

R64_OK In all cases.

R64ConGPOutGet BitFlow SDK

SDK-41-16 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-42-1

R64 Control Functions

Chapter 42

42.1 Introduction

These functions control how the R64 interfaces to the camera. In general, the registers on
the board are set up with the camera configuration file, and these functions need not be
called. However, if an application needs to make minor changes to the boards setup, it is
often easier to call these functions than to switch between camera modes.

These functions are essentially wrappers around register reads and writes. Some users
may find it easier to write directly to the registers as it more closely imitates modifying the
camera configuration files.

R64ConVTrigModeSet BitFlow SDK

SDK-42-2 BitFlow, Inc. Version G.8

42.2 R64ConVTrigModeSet

Prototype R64RC R64ConVTrigModeSet(R64 Board, BFU32 TrigMode, BFU32 TrigSelect,
BFU32 TrigPolarity)

Description Sets the trigger mode and polarity for the acquisition engine.

Parameters Board

Handle to board.

TrigMode

Trigger mode for acquisition the engine:

BFTrigFreeRun – no trigger is used, board free runs.
BFTrigOneShot – one shot mode, for asynchronously resettable cameras.
BFTrigOneShotSelfTriggered – self triggering one shot mode.
BFTrigAqCmd - acquisition command is latched by trigger.
BFTrigSnapQualified - trigger causes snap command to be issue, applica-

tion issues grab command to turn on this mode, freeze command
turns off this mode.

BFTrigContinuousData – for continuous data sources.
BFTrigContinuousDataQualified – for continuous data sources with sepa-

rate date qualifier.
BFTrigOneShotStartAStopA – variable length image acquisition controlled

by trigger, one frame acquired per trigger assert.
BFTrigOneShotStartAStopALevel – variable length image acquisition con-

trolled by trigger, capture continues as long as trigger stays asserted.

TrigSelect

Controls which type of trigger is to be used:

For Karbon-CL/Alta/Neon/R64

BFTrigDiff - Differential trigger
BFTrigTTL - TLL trigger
BFTrigOpto - Opto-isolated trigger
BFTrigFVAL - Trigger is the FVAL signal on the CL cable
BFTrigNTG - NTG is trigger source
BFIgnore - No change to trigger selection

For Karbon-CXP

BFTrigDiff - Differential trigger
BFTrigTTL - TLL trigger
BFTrigNTG - NTG is trigger source
BFTrigVFG0TrigSel - Use same trigger as VFG 0
BFTrigButton - Trigger is button

R64 Control Functions R64ConVTrigModeSet

Version G.8 BitFlow, Inc. SDK-42-3

BFTrigCXPTriggerIn - Trigger is CXP trigger (from camera)
BFTrigSWTrigger - Trigger is software trigger
BFTrigScanStep - Trigger comes from quad. encoder circuit in scan step

mode
BFTrigNTGVFG0 - Trigger is NTG of VFG 0
BFIgnore - No change to trigger selection

TrigPolarity

Polarity for trigger:

BFTrigAssertedHigh – TRIGGER is asserted on rising edge.
BFTrigAssertedLow – TRIGGER is asserted on falling edge.

Returns

Comments This function works in conjunction with the camera configuration files. It is important
to understand that not all cameras support all triggering modes. Usually a particular
camera will only support one or two triggering modes. Furthermore, a different cam-
era configuration file is usually needed for each triggering mode. For example, a cam-
era will almost always have a free running configuration file, useful for set up and
offline testing. A camera may also have a one shot file, which would be used in time-
critical applications. You cannot usually put the board, set up by the free running file,
into one shot mode because the latter mode requires special triggering signals to be
sent to the camera. However, you can put the board, set up by a one shot file, into self
triggering one shot mode. This is useful for camera set up and system debugging.

The exception to the paragraph above is the triggered acquire command mode,
which will work with all cameras. This mode is really no different than just issuing an
acquisition command at a specific point in time in the future. When the board is in this
mode, an acquisition command is written by the host but not latched. Basically, the
board is armed but does not acquire any data. When the trigger is asserted the com-
mand latches. Once the command is latched, it acts as it normally does, that is, the
board starts acquiring data at the start of the next frame from the camera. The only
acquisition commands that are affected are snap and grab. The freeze and abort com-
mands work normally, and do not need a trigger to be latched. The disadvantage of
this mode is that it can add up to a frame time of latency to any trigger, because the
camera’s timing is not being reset.

For more information on the acquisition and trigger on the R64, see the Hardware
Reference Manual.

If you want to find out what mode the board is in, call the function R64ConVTrigMode-
Get.

Note: This function only controls how the board is vertically triggered. Vertical triggers
cause the board to acquire a whole frame from an area camera or a number of lines
from a line scan camera. You must enable the connection of the external trigger with

R64_OK If successful.

R64_BAD_CON_PARAM One of the parameters is not valid

R64ConVTrigModeSet BitFlow SDK

SDK-42-4 BitFlow, Inc. Version G.8

the acquisition engines with the function R64ConExTrigConnect. The software triggers
are always available. Not all combinations of TrigMode and TrigAssignments are
possible.

R64 Control Functions R64ConVTrigModeGet

Version G.8 BitFlow, Inc. SDK-42-5

42.3 R64ConVTrigModeGet

Prototype R64RC R64ConVTrigModeGet(R64 Board, PBFU32 TrigMode, PBFU32 TrigSelect,
PBFU32 TrigPolarity)

Description Gets the current trigger mode and polarities for both acquisition engines.

Parameters Board

Handle to board.

TrigMode

Returns the current trigger mode for the acquisition engine:

BFTrigFreeRun – no trigger is used, board free runs.
BFTrigOneShot – one shot mode, for asynchronously resettable cameras.
BFTrigOneShotSelfTriggered – self triggering one shot mode.
BFTrigAqCmd - acquisition command is latched by trigger.
BFTrigSnapQualified - trigger causes snap command to be issue, applica-

tion issues grab command to turn on this mode, freeze command
turns off this mode.

BFTrigContinuousData – for continuous data sources.
BFTrigContinuousDataQualified – for continuous data sources with sepa-

rate date qualifier.
BFTrigOneShotStartAStopA – variable length image acquisition controlled

by trigger, one frame acquired per trigger assert.
BFTrigOneShotStartAStopALevel – variable length image acquisition con-

trolled by trigger, capture continues as long as trigger stays asserted.

TrigSelect

Returns the current type of trigger being used by the acquisition engine:

For Karbon-CL/Alta/Neon/R64

BFTrigDiff - Differential trigger
BFTrigTTL - TLL trigger
BFTrigOpto - Opto-isolated trigger
BFTrigFVAL - Trigger is the FVAL signal on the CL cable
BFTrigNTG - NTG is trigger source

For Karbon-CXP

BFTrigDiff - Differential trigger
BFTrigTTL - TLL trigger
BFTrigNTG - NTG is trigger source
BFTrigVFG0TrigSel - Use same trigger as VFG 0
BFTrigButton - Trigger is button
BFTrigCXPTriggerIn - Trigger is CXP trigger (from camera)

R64ConVTrigModeGet BitFlow SDK

SDK-42-6 BitFlow, Inc. Version G.8

BFTrigSWTrigger - Trigger is software trigger
BFTrigScanStep - Trigger comes from quad. encoder circuit in scan step

mode
BFTrigNTGVFG0 - Trigger is NTG of VFG 0

TrigPolarity

Returns the current polarity for the trigger:

BFTrigAssertedHigh - trigger A is asserted on rising edge.
BFTrigAssertedLow - trigger A is asserted on falling edge.

Returns

Comments This function returns the current state of the trigger circuitry for the acquisition
engine. See the function R64ConVTrigModeSet for a complete description of the
modes.

R64_OK In all cases.

R64 Control Functions R64ConHTrigModeSet

Version G.8 BitFlow, Inc. SDK-42-7

42.4 R64ConHTrigModeSet

Prototype BFRC R64ConHTrigModeSet(Bd Board, BFU32 EncMode, BFU32 EncPolarity,
BFU32 EncSelect)

Description Sets the horizontal trigger mode and polarities for the acquisition engine.

Parameters Board

Handle to board.

EncMode

The horizontal triggering mode:

BFEncFreeRun – no line trigger is used, board free runs.
BFEncOneShot – horizontal one shot mode, every line needs a line trigger.
BFEncOneShotSelfTriggered – self triggering one shot mode..

EncPolarity

Polarity for all line triggers:

BFEncAssertedHigh - line triggers are asserted on rising edge.
BFEncAssertedLow - line triggers are asserted on falling edge.

EncSelect

Type of encoder:

For Karbon-CL/R64/Neon:

BFEncTTL - Single ended TTL level encoder
BFEncDiff - Differential (LVDS) encoder
BFEncOpto - Optocoupled encoder

For Karbon-CXP:

BFEncTTL - Single ended TTL level encoder
BFEncDiff - Differential (LVDS) encoder
BFEncVFG0EncASel - Selected encoder on VFG0
BFEncNTG - NTG is encoder
BFEncButton - The boards buttong is the encoder
BFEncCXPTriggerIn - CXP trigger is the encoder (from camera)
BFEncSWEncoderA - Software encocder A is the encoder
BFEncNTGVFG0 - NTG from VFG0

Returns

R64_OK If successful.

R64ConHTrigModeSet BitFlow SDK

SDK-42-8 BitFlow, Inc. Version G.8

Comments

R64_BAD_CON_PARAM One of the parameters is not valid or the particu-
lar combination of parameters is not possible.

R64 Control Functions R64ConHTrigModeGet

Version G.8 BitFlow, Inc. SDK-42-9

42.5 R64ConHTrigModeGet

Prototype BFRC R64ConHTrigModeGet(Bd Board, PBFU32 EndMode, PBFU32 EncPolarity,
PBFU32 EncSelect)

Description Gets the current horizontal encoder mode and polarity of the encoder.

Parameters Board

Handle to board.

EncMode

Returns the current encoder mode:

BFEncFreeRun – no line trigger is used, board free runs.
BFEncOneShot – horizontal one shot mode, every line needs a line trigger.

EncPolarity

Returns the current polarity for the encoder:

BFEncAssertedHigh - trigger A is asserted on rising edge.
BFEncAssertedLow - trigger A is asserted on falling edge.

EncSelect

Returns the encoder input type:

For Karbon-CL/R64/Neon:

BFEncTTL - Single ended TTL level encoder
BFEncDiff - Differential (LVDS) encoder
BFEncOpto - Optocoupled encoder

For Karbon-CXP:

BFEncTTL - Single ended TTL level encoder
BFEncDiff - Differential (LVDS) encoder
BFEncVFG0EncASel - Selected encoder on VFG0
BFEncNTG - NTG is encoder
BFEncButton - The boards buttong is the encoder
BFEncCXPTriggerIn - CXP trigger is the encoder (from camera)
BFEncSWEncoderA - Software encocder A is the encoder
BFEncNTGVFG0 - NTG from VFG0

Returns

R64_OK In all cases.

R64ConHTrigModeGet BitFlow SDK

SDK-42-10 BitFlow, Inc. Version G.8

Comments

R64 Control Functions R64ConSwTrig

Version G.8 BitFlow, Inc. SDK-42-11

42.6 R64ConSwTrig

Prototype R64RC R64ConSwTrig(R64 Board, BFU32 AssertType)

Description Trips software trigger.

Parameters Board

Handle to board.

AssertType

BFTrigAssert - Sets the trigger high.
BFTrigDeassert - Sets the trigger low.

Returns

Comments Register REG_SW_TRIG is modified by this function.

R64_OK Function succeeded.

R64_BAD_CON_PARAM Invalid AssertType.

R64ConSwTrigStat BitFlow SDK

SDK-42-12 BitFlow, Inc. Version G.8

42.7 R64ConSwTrigStat

Prototype R64RC R64ConSwTrigStat(R64 Board, PBFU32 Status)

Description Returns the status of the software trigger.

Parameters Board

Handle to board.

Status

The status of the software trigger can be:

BFTrigLow - Trigger is low.
BFTrigHigh - Trigger is high.

Returns

Comments This function returns the status of the software trigger at the moment that the function
is called.

R64_OK In all cases.

R64 Control Functions R64ConHwTrigStat

Version G.8 BitFlow, Inc. SDK-42-13

42.8 R64ConHwTrigStat

Prototype R64RC R64ConHWTrigStat(R64 Board, PBFU32 Status)

Description Returns the status of the hardware trigger.

Parameters Board

Handle to board.

Status

The status of the hardware trigger can be:

BiTrigLow - Trigger is low.

BiTrigHigh - Trigger is high.

Returns

Comments This function returns the status of the hardware trigger at the moment that the func-
tion is called.

R64_OK If successful.

R64_BAD_CON_PARAM Couldn’t determine the trigger type being used.

R64ConExTrigConnect BitFlow SDK

SDK-42-14 BitFlow, Inc. Version G.8

42.9 R64ConExTrigConnect

Prototype R64RC R64ConExTrigConnectt(R64 Board, BFU32 Mode)

Description Enables or disables the external trigger.

Parameters Board

Handle to board.

Mode

The external trigger can be:

BFExTrigConnect - Enables the external trigger.

BFExTrigDisconnect - Disables the external trigger.

Returns

Comments This function enables or disables the external trigger based on the mode parameter.

R64_OK If successful.

R64_BAD_CON_PARAM Invalid mode parameter.

R64 Control Functions R64ConExTrigStatus

Version G.8 BitFlow, Inc. SDK-42-15

42.10 R64ConExTrigStatus

Prototype R64RC R64ConExTrigStatus(R64 Board, PBFU32 Mode)

Description Returns the enabled status of the external trigger.

Parameters Board

Handle to board.

Mode

The mode of the external trigger can be:

BFExTrigConnect - The external trigger is enabled.

BFExTrigDisconnect - The external trigger is disabled.

Returns

Comments This function reads the EN_TRIGGER register to determine if the external trigger is
enabled or disabled. If the register is set to a one, the external trigger is enabled. Oth-
erwise the external trigger is disabled.

To enable or disable the external trigger see function R64ConExTrigConnect.

R64_OK In all cases.

R64ConFreqSet BitFlow SDK

SDK-42-16 BitFlow, Inc. Version G.8

42.11 R64ConFreqSet

Prototype R64RC R64ConFreqSet(R64 Board, BFU8 Freq)

Description Sets the R64 internal clock generator frequency.

Parameters Board

Handle to board.

Freq

Internal clock frequency:

R64Freq000 - set to 0.0 MHz
R64Freq037 - set to 3.75 MHz
R64Freq075 - set to 7.5 MHz
R64Freq150 - set to 15.0 MHz
R64Freq240 - set to 24.0 MHz
R64Freq300 - set to 30.0 MHz
R64Freq480 - set to 48.0 MHz
R64Freq600 - set to 60.0 MHz

Returns

Comments R64 clock frequencies are declared in R64Def.h.

This clock does not affect board operation, it is only provided for cameras that need
an external master clock.

Register REG_CFREQ is the only register that may be modified by this function.

R64_OK Function succeeded.

R64_BAD_FREQ Illegal clock frequency.

R64_CON_FREQ_ERR Frequency switch failed.

R64 Control Functions R64ConGPOutSet

Version G.8 BitFlow, Inc. SDK-42-17

42.12 R64ConGPOutSet

Prototype R64RC R64ConGPOutSet(R64 Board, BFU8 Value, BFU32 Level)

Description Sets the level of the GPOUT outputs.

Parameters Board

Handle to board.

Value

One or more outputs ORed together:

R64GPOut0 - general output 0
R64GPOut1 - general output 1
R64GPOut2 - general output 2
R64GPOut3 - general output 3
R64GPOut4 - general output 4
R64GPOut5 - general output 5
R64GPOut6 - general output 6
R64GPOut7 - general output 7
R64GPOut8 - general output 8
R64GPOut9 - general output 9
R64GPOut10 - general output 10
R64GPOut11 - general output 11

Level

0 - Sets the GPOUT(s) to zero (low).
1 - Sets the GPOUT(s) to one (high).

Returns

Comments This function sets the level of one or more GPOUTs.

R64_OK Function succeeded.

R64_BAD_GPOUT Illegal general purpose output pin number.

R64_CON_GPOUT_ERR Output pin set failed.

R64ConGPOutGet BitFlow SDK

SDK-42-18 BitFlow, Inc. Version G.8

42.13 R64ConGPOutGet

Prototype R64RC R64ConGPOutSet(R64 Board, BFU8 Value)

Description Gets the current state of the GPOUTs

Parameters Board

Handle to board.

Value

One or more outputs ORed together who state is current set (i.e. 1):

R64GPOut0 - general output 0
R64GPOut1 - general output 1
R64GPOut2 - general output 2
R64GPOut3 - general output 3
R64GPOut4 - general output 4
R64GPOut5 - general output 5
R64GPOut6 - general output 6
R64GPOut7 - general output 7
R64GPOut8 - general output 8
R64GPOut9 - general output 9
R64GPOut10 - general output 10
R64GPOut11 - general output 11

Returns

Comments This function returns all of the GPOUTs whose current state is 1.

R64_OK Function succeeded.

R64 Control Functions R64LastLine

Version G.8 BitFlow, Inc. SDK-42-19

42.14 R64LastLine

Prototype R64RC R64LastLine(R64 Board, PBFU32 pCurLine)

Description Returns the line number of the last line in the frame.

Parameters Board

Handle to board.

pCurLine

Pointer to the last line number.

Returns

Comments This functions returns the line number of the last line in the frame. The returned value
is actually the Vertical CTAB counter value for the last line. If the camera being used is
a line scan camera then this value will be equivalent to the line number. However, for
area scan camera the start of the vertical active region will have to be subtracted from
the returned value (usually the vertical active region starts at 0x1000).

This function is most useful when acquiring variable sized images and thus the frame
size is unknown. This function will return the value from the last frame up until the end
of the following frame. In other words, the value of the last line stays constant for the
entire duration of the next frame. Once the next frame ends, then the last line is the
value for that frame.

R64_OK In all cases.

R64ConExposureControlSet BitFlow SDK

SDK-42-20 BitFlow, Inc. Version G.8

42.15 R64ConExposureControlSet

Prototype BFRC R64ConExposureControlSet(Bd Board, BFDOUBLE ExposurePeriod, BFDOU-
BLE LineFramePeriod, BFU32 TriggerMode, BFBOOL AssertedHigh, BFU32 Out-
putSignal)

Description Programs the New Timing Generator (NTG), used to create waveforms to control the
line/frame rate and exposure time of cameras.

Parameters Board

Handle to board.

ExposurePeriod

The desired exposure period in milliseconds

Note: This parameter is floating point and you can pass in non-whole number values
(e.g. 10.523)

LineFramePeriod

The desire line/frame rate period in milliseconds.

Note: This parameter is floating point and you can pass in non-whole number values
(e.g. 10.523)

TriggerMode

The triggering mode for the timing generator. Must be one of the following:

BFNTGModeFreeRun - Timing generator is free running.
BFNTGModeOneShotTrigger - Timing generator is in one-shot mode, trig-

gered by the board’s trigger input.
BFNTGModeOneShotEncoder - Timing generator is in one-shot mode,

triggered by the board’s encoder input.

AssertedHigh

The level of the timing generator’s output waveform. Must be:

TRUE - Waveform is asserted high.
FALSE - Waveform is asseted low.

OutputSignal

The output pins that the waveform will be output on. Can be one more more of the
following ORed together (signal will be output on all pins selected by this parameter):

The outputs that the waveform will be output on. Can be one or more of the following
ORed together (signal will be output on all pins selected by this parameter):

R64 Control Functions R64ConExposureControlSet

Version G.8 BitFlow, Inc. SDK-42-21

For the Karbon-CL/Neon/Alta:

BFNTGOuputCC1 - Output on the CC1 signal on CL connector.
BFNTGOuputCC2 - Output on the CC2 signal on CL connector.
BFNTGOuputCC3 - Output on the CC3 signal on CL connector.
BFNTGOuputCC4 - Output on the CC4 signal on CL connector.
BFNTGOutputGP0 - Output on GPOUT0 on the I/O connector.
BFNTGOutputGP1 - Output on GPOUT1 on the I/O connector.
BFNTGOutputGP2 - Output on GPOUT2 on the I/O connector.
BFNTGOutputGP3 - Output on GPOUT3 on the I/O connector.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.

For the Karbon-CXP

BFNTGOuputCC1 - Output on the CC1 signal on CL connector.
BFNTGOuputCC2 - Output on the CC2 signal on CL connector.
BFNTGOuputCC3 - Output on the CC3 signal on CL connector.
BFNTGOuputCC4 - Output on the CC4 signal on CL connector.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.
BFNTGInputEncB - Output goes to Encoder B input.

Returns

Comments This function is used to program the New Timing Generator (NTG) avialable on mod-
ern BitFlow boards (Karbon, Neon, Alta and newer). The timing generator is used to
control the line/frame rate and exposure time of attached cameras.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The current board family does not support the
NTG.

R64_NTG_NOT_SUPPORTED The installed frame grabber does not support
the NTG or the current firmware does not cur-
rently support the NTG (contact BitFlow for
more informatino).

R64_NTG_EXP_OUT_OF_
RANGE

The requested values are out of range of the
timing generator

R64_NTG_EXP_GT_LF The requested exposure time is longer than
the requested line/frame period.

R64_NTG_UNKNOWN_MODE The requested mode triggering mode is not
known.

R64ConExposureControlSet BitFlow SDK

SDK-42-22 BitFlow, Inc. Version G.8

The Exposure time is controlled by the ExposurePeriod parameter. This parameter
takes a floating point value in units of milliseconds. The line/frame rate is controlled
by the LineFrameRate parameter. This parameter is also floating point and the units
are in milliseconds. Note that although this parameter controls the line/frame rate, it is
not in units of Hertz, which it would be if this parameter was the line/frame frequency.
Instead this parameters controls the line/frame period, units of time. Refer to the
hardware manual of your frame grabber to see the range for these parameters.

The triggering of the NTG is independent of the triggering configuration of the rest of
the frame grabber. The NTG is fully independent all other components of the frame
grabber, and runs completely on its own timing. The NTG can be triggered either by
the currently selected trigger input or the currently selected encoder input.

The waveform of the NTG can be routed to one or more outputs. The parameter Out-
putSignal controls which outputs get the waveform. This parameter can take one or
more of the defined outputs ORed together. The waveform will appear on all outputs
simultaneously selected by this parameter.

The current status of the NTG can be retrieved using the R64ConExposureControlGet
function.

Please refer to the hardware manual of your board for more detailed information on
how this timing generator works.

R64 Control Functions R64ConExposureControlGet

Version G.8 BitFlow, Inc. SDK-42-23

42.16 R64ConExposureControlGet

Prototype BFRC R64ConExposureControlSet(Bd Board, PBFDOUBLE pExposurePeriod, PBF-
DOUBLE pLineFramePeriod, PBFU32 pTriggerMode, PBFBOOL pAssertedHigh,
PBFU32 pOutputSignal)

Description Retrieve the current parameters of the New Timing Generator (NTG).

Parameters Board

Handle to board.

pExposurePeriod

Pointer to a double, returns the current exposure period in milliseconds

Note: This parameter is floating point and can be a in non-whole number values (e.g.
10.523)

pLineFramePeriod

Pointer to a double, returns the current line/frame rate period in milliseconds.

Note: This parameter is floating point and can be in non-whole number values (e.g.
10.523)

pTriggerMode

Pointer to a BFU32, returns the current triggering mode for the timing generator. Will
be one of the following:

BFNTGModeFreeRun - Timing generator is free running.
BFNTGModeOneShotTrigger - Timing generator is in one-shot mode, trig-

gered by the board’s trigger input.
BFNTGModeOneShotEncoder - Timing generator is in one-shot mode,

triggered by the board’s encoder input.

pAssertedHigh

Pointer to a BFU32, returns the current the current level of the timing generator’s out-
put waveform. Will be:

TRUE - Waveform is asserted high.
FALSE - Waveform is asseted low.

pOutputSignal

Pointer to a BFU32, returns the current output pins that the waveform will be output
on. Will be one more more of the following ORed together:

R64ConExposureControlGet BitFlow SDK

SDK-42-24 BitFlow, Inc. Version G.8

The outputs that the waveform will be output on. Can be one or more of the following
ORed together (signal will be output on all pins selected by this parameter):

For the Karbon-CL/Neon/Alta:

BFNTGOuputCC1 - Output on the CC1 signal on CL connector.
BFNTGOuputCC2 - Output on the CC2 signal on CL connector.
BFNTGOuputCC3 - Output on the CC3 signal on CL connector.
BFNTGOuputCC4 - Output on the CC4 signal on CL connector.
BFNTGOutputGP0 - Output on GPOUT0 on the I/O connector.
BFNTGOutputGP1 - Output on GPOUT1 on the I/O connector.
BFNTGOutputGP2 - Output on GPOUT2 on the I/O connector.
BFNTGOutputGP3 - Output on GPOUT3 on the I/O connector.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.

For the Karbon-CXP

BFNTGOuputCC1 - Output on the CC1 signal on CL connector.
BFNTGOuputCC2 - Output on the CC2 signal on CL connector.
BFNTGOuputCC3 - Output on the CC3 signal on CL connector.
BFNTGOuputCC4 - Output on the CC4 signal on CL connector.
BFNTGInputTrig - Output goes to Trigger input.
BFNTGInputEncA - Output goes to Encoder A input.
BFNTGInputEncB - Output goes to Encoder B input.

Returns

Comments This function is retrieves the current status of the New Timing Generator (NTG) avial-
able on modern BitFlow boards (Karbon, Neon, Alta and newer). The timing genera-
tor is used to control the line/frame rate and exposure time of attached cameras.

The NTG can be programmed using the R64ConExposureControlSet function.

CI_OK If successful.

CISYS_ERROR_BAD_
BOARDPTR

An invalid board handle was passed to the
function.

CISYS_ERROR_NOTSUP-
PORTED

The current board family does not support the
NTG.

R64_NTG_NOT_SUPPORTED The installed frame grabber does not support
the NTG or the current firmware does not cur-
rently support the NTG (contact BitFlow for
more informatino).

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-43-1

R64 Control Tables

Chapter 43

43.1 Introduction

These functions allow an application to write directly to the control tables (CTAB) on the
R64. Normally the CTABs are initialized from a camera configuration file. However,
because the CTABs control things like frame rate and exposure time, an application may
want to modify them on-the-fly.

Modifying CTABS from Software BitFlow SDK

SDK-43-2 BitFlow, Inc. Version G.8

43.2 Modifying CTABS from Software

It is often necessary for an application to modify the CTABs dynamically, based on
user input or as the result of a calculation on image data. The SDK provides function-
ality for modifying the CTABs from an application. The primary function used to pro-
gram the CTAB is “R64CtabFill()”. This function writes a masked value to the R64’s
camera control table. The following sections illustrate the use of “R64CtabFill()” to
modify CTABs.

R64 Control Tables Example Code Showing Modifying The CTabs From Software

Version G.8 BitFlow, Inc. SDK-43-3

43.3 Example Code Showing Modifying The CTabs From Software

The code below is a function to program the CTabs for a color line scan camera that
has four independent exposure signals. One signal controls the overall line rate, and
the other three control the exposure for the Red, Green and Blue channels. The func-
tion take four parameters which are used to control these four signals. The units of the
parameters are in CTab clocks, which is equivalent to pixel clock divided by eight.

For the sake of readability, the function below was coded very simply. The downside
is that it is not very efficient in execution. The R64 CTabs are quite large, and clearing
them as is done four times below can take a long time. A more efficient approach
would be to retain the value of the parameters in static variables, and when this func-
tion is called, only program CTabs with what has changed from the previous call.

BFU32 R64TVISetExposures(Bd hBoard, BFU32 NewFrame, BFU32
RedCommon, BFU32 Green, BFU32 Blue)
{

BFU32 NewFrameStart,NewFrameSize;
BFU32 RStart, RSize;
BFU32 GStart, GSize;
BFU32 BStart, BSize;

/*
* Calculate starts and sizes
*/

NewFrameStart = NewFrame;
NewFrameSize = 1;

RStart = NewFrame - RedCommon + 1;
RSize = RedCommon + Safety;

GStart = NewFrame - Green + 1;
GSize = Green + Safety;

BStart = NewFrame - Blue + 1;
BSize = Blue + Safety;

/*
* Program the CTABs
*/

// stop CTABs
BFRegPoke(hBoard,REG_CTABHOLD,1);

// program GPHO (controls CT0 = NewFrame)
R64CTabFill(hBoard,0,R64HCTABSIZE,R64HCTabGPH0,0xffff);
R64CTabFill(hBoard,0,R64VCTABSIZE,R64VCTabGPV0,0xffff);
R64CTabFill(hBoard,NewFrameStart,NewFrameSize,R64HCTabGPH0,0)

;

Example Code Showing Modifying The CTabs From Software BitFlow SDK

SDK-43-4 BitFlow, Inc. Version G.8

// program GPH1 (controls CT1 = Red Integration)
R64CTabFill(hBoard,0,R64HCTABSIZE,R64HCTabGPH1,0);
R64CTabFill(hBoard,0,R64VCTABSIZE,R64VCTabGPV1,0xffff);
R64CTabFill(hBoard,RStart,RSize,R64HCTabGPH1,0xffff);

// program GPH2 (controls CT2 = Green Integration)
R64CTabFill(hBoard,0,R64HCTABSIZE,R64HCTabGPH2,0);
R64CTabFill(hBoard,0,R64VCTABSIZE,R64VCTabGPV2,0xffff);
R64CTabFill(hBoard,GStart,GSize,R64HCTabGPH2,0xffff);

// program GPH3 (controls CT3 = Blue Integration)
R64CTabFill(hBoard,0,R64HCTABSIZE,R64HCTabGPH3,0);
R64CTabFill(hBoard,0,R64VCTABSIZE,R64VCTabGPV3,0xffff);
R64CTabFill(hBoard,BStart,BSize,R64HCTabGPH3,0xffff);

// allow CTABs to run
BFRegPoke(hBoard,REG_CTABHOLD,0);

return 0;
}

R64 Control Tables R64CTabPeek

Version G.8 BitFlow, Inc. SDK-43-5

43.4 R64CTabPeek

Prototype BFU16 R64CTabPeek(R64 Board, BFU32 Index, BFU16 Mask)

Description Reads a single masked value from the R64 Camera Control Table.

Parameters Board

R64 board ID.

Index

CTAB table offset.

0 - 0x8000 for horizontal CTABs
0 - 0x20000 for vertical CTABs

Mask

CTAB bit extraction mask.

R64CTab
R64HCTab
R64VCTab
R64HCTabHStart
R64HCTabHReset
R64HCTabENHLoad
R64HCTabReserved
R64HCTabGPH0
R64HCTabGPH1
R64HCTabGPH2
R64HCTabGPH3
R64VCTabVStart
R64VCTabVReset
R64VCTabENVLoad
R64VCTabIRQ
R64VCTabGPV0
R64VCTabGPV1
R64VCTabGPV2
R64VCTabGPV3

Returns A single masked CTAB entry.

Comments CTAB bit masks and other definitions are declared in “R64Def.h”.

Example

Check for a horizontal start bit in the horizontal CTAB at the horizontal load point loca-
tion 0x2000.

R64CTabPeek BitFlow SDK

SDK-43-6 BitFlow, Inc. Version G.8

BFU32 HStartBit
HStartBit = R64CTabPeek(Board, 0x2000, R64HCTabHStart)

R64 Control Tables R64CTabPoke

Version G.8 BitFlow, Inc. SDK-43-7

43.5 R64CTabPoke

Prototype R64RC R64CTabPoke(R64 Board, BFU32 Index, BFU16 Mask, BFU16 Value)

Description Writes a single masked value from the R64 Camera Control Table.

Parameters Board

R64 board ID.

Index

CTAB table offset.

Mask

CTAB bit extraction mask (see R64CtabPeek).

Value

CTAB value.

Returns

Comments CTAB bit masks and other definitions are declared in “R64Def.h”.

Example

Write a vertical reset bit in the vertical CTAB after 0x1000 lines.

R64CTabPoke(Board, 0x1000, R64VCTabVReset, 0xffff)

R64_OK Function succeeded.

R64_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R64_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R64_CTAB_POKE_ERR CTAB poke failed.

R64CTabRead BitFlow SDK

SDK-43-8 BitFlow, Inc. Version G.8

43.6 R64CTabRead

Prototype R64RC R64CTabRead(R64 Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pDest)

Description Reads masked CTAB values from the R64 Camera Control Table.

Parameters Board

R64 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see R64CtabPeek).

pDest

Pointer to CTAB table storage (32 bits per entry).

Returns

Comments CTAB bit masks and other definitions are declared in “R64Def.h”.

Example

Read 0x100 values from the vertical CTAB starting at the zero.

BFU32 VTab[0x100]
R64CTabRead(Board, 0, 0x100, R64VCTab, &VTab[0])

R64_OK Function succeeded.

R64_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R64_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R64_CTAB_READ_ERR CTAB read failed.

R64 Control Tables R64CTabWrite

Version G.8 BitFlow, Inc. SDK-43-9

43.7 R64CTabWrite

Prototype R64RC R64CTabWrite(R64 Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
PBFVOID pSource)

Description Writes masked CTAB values from the R64 Camera Control Table.

Parameters Board

R64 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to read.

Mask

CTAB bit extraction mask (see R64CtabPeek).

pSource

CTAB entries to write (32 bits per entry).

Returns

Comments CTAB bit masks and other definitions are declared in “R64Def.h”.

Example

Write an entire horizontal CTAB to the R64.

BFU32 HTab[R64HCTABSIZE]
R64CTabWrite(Board, 0, R64HCTABSIZE, R64HCTab, &HTab[0])

R64_OK Function succeeded.

R64_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R64_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R64_CTAB_WRITE_ERR CTAB write failed.

R64CTabFill BitFlow SDK

SDK-43-10 BitFlow, Inc. Version G.8

43.8 R64CTabFill

Prototype R64RC R64CTabFill(R64 Board, BFU32 Index, BFU32 NumEntries, BFU16 Mask,
BFU16 Value)

Description Writes a masked CTAB fill value from the R64 Camera Control Table.

Parameters Board

R64 board ID.

Index

CTAB table offset.

NumEntries

Number of CTAB values to write.

Mask

CTAB bit extraction mask (see R64CtabPeek).

Value

CTAB fill value to write.

Returns

Comments CTAB bit masks and other definitions are declared in “R64Def.h”.

Example

Clear the horizontal and vertical CTAB tables.

R64CTabFill(Board, 0, R64HCTABSIZE, R64HCTab, 0x0000)
R64CTabFill(Board, 0, R64VCTABSIZE, R64VCTab, 0x0000)

R64_OK Function succeeded.

R64_BAD_HCTAB_ADDR Illegal horizontal CTAB address.

R64_BAD_VCTAB_ADDR Illegal vertical CTAB address.

R64_CTAB_FILL_ERR CTAB fill failed.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-44-1

R64 Dual Port Memory

Chapter 44

44.1 Introduction

These functions allow an application to write and read directly to the dual port memory
(DPM) on the R64. These function are only used in special circumstances and are not
needed for ordinary acquisition.

R64DPMPeek BitFlow SDK

SDK-44-2 BitFlow, Inc. Version G.8

44.2 R64DPMPeek

Prototype BFU32 R64DPMPeek(R64 Board, BFU32 Offset)

Description Read a single 32-bit value from the R64 DPM.

Parameters Board

R64 board ID.

Offset

Offset into DPM.

Returns A single 32-bit DPM entry.

Comments

R64 Dual Port Memory R64DPMPoke

Version G.8 BitFlow, Inc. SDK-44-3

44.3 R64DPMPoke

Prototype R64RC R64DPMPoke(R64 Board, BFU32 Offset, BFU32 Value)

Description Write a single 32-bit value to the R64 DPM.

Parameters Board

R64 board ID.

Offset

Offset into DPM.

Value

The value to place into the DPM.

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

R64DPMRead BitFlow SDK

SDK-44-4 BitFlow, Inc. Version G.8

44.4 R64DPMRead

Prototype R64RC R64DPMRead(R64 Board, BFU32 Offset, BFU32 NumEntries, PBFVOID
pDest)

Description Read 32-bit DPM values from the R64 DPM.

Parameters Board

R64 board ID.

Offset

Offset into DPM.

NumEntries

Number of DPM values to read.

pDest

Pointer to storage for the DPM values (32 bits per entry).

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

R64 Dual Port Memory R64DPMWrite

Version G.8 BitFlow, Inc. SDK-44-5

44.5 R64DPMWrite

Prototype R64RC R64DPMWrite(R64 Board, BFU32 Offset, BFU32 NumEntries, PBFVOID pSo-
urce)

Description Write 32-bit DPM values to the R64 DPM.

Parameters Board

R64 board ID.

Offset

Offset into DPM.

NumEntries

Number of DPM values to write.

pSource

DPM entries to write (32 bits per entry).

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

R64DPMFill BitFlow SDK

SDK-44-6 BitFlow, Inc. Version G.8

44.6 R64DPMFill

Prototype R64RC R64DPMFill(R64 Board, BFU32 Offset, BFU32 NumEntries, BFU32 Value)

Description Write a 32-bit DPM fill value to the R64 DPM.

Parameters Board

R64 board ID.

Offset

Offset into DPM

NumEntries

Number of DPM values to write.

Value

DPM fill value to write.

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

R64 Dual Port Memory R64DPMRamp

Version G.8 BitFlow, Inc. SDK-44-7

44.7 R64DPMRamp

Prototype R64RC R64DPMRamp(R64 Board, BFU32 StartOffset, BFU32 EndOffset, BFU32
StartVal, BFU32 EndVal)

Description Write a 32-bit ramp to the R64 DPM.

Parameters Board

R64 board ID.

StartOffset

DPM start offset.

EndOffset

DPM end offset.

StartVal

DPM start value.

EndVal

DPM end value.

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

R64DPMReadDMA BitFlow SDK

SDK-44-8 BitFlow, Inc. Version G.8

44.8 R64DPMReadDMA

Prototype R64RC R64DPMReadDMA(R64 Board, BFU32 Offset, BFU32 NumEntries, PBFVOID
pDest)

Description Read 32-bit DPM values from the R64 DPM using DMA.

Parameters Board

R64 board ID.

Offset

Offset into DPM

NumEntries

Number of DPM values to read.

Value

Pointer to storage for the DPM values (32 bits per entry).

Returns

Comments

R64_OK Function succeeded.

Non-zero On error.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-45-1

Camera Link Specification Serial Interface

Chapter 45

45.1 Introduction

The functions described in this chapter can be used with any BitFlow board with a camera
link interface (Road Runner CL, R3-CL, R64-CL, Neon-CL, Karbon-CL and Axion-CL). These
functions are used to send and receive commands to and from the camera, over the serial
communications portion of the Camera Link cable. These functions directly control the
UART (serial communications chip) on the BitFlow board. They cannot be used to com-
municate with the standard COM ports in the computer.

The functions in this chapter are defined by the Camera Link Specification revision 1.1.
BitFlow has added some non-standard functions which are more convenient to use in cer-
tain circumstances. These functions start with the pre-fix clBF.

Normal program flow would use the functions in the following order to communicate with
the camera without acquiring data from the camera. First the serial device needs to be
initilized. Once clSerialInit returns successfully the read and write functions may be called.
When communication has ended the serial device will need to be closed. The following is
a simple example:

// declare serial reference instance
void serialRefPtr;
// initialize the first serial device
clSerialInit(0, &serialRefPtr);
// Write data to camera
clSerialWrite(serialRefPtr, transmit_buf, numofchar, 100);
// Read data from the camera
clSerialRead(serialRefPtr, receive_buf, &BufReadSize,100);
// Close the serial device
clSerialClose(serialRefPtr);

For a more complete example of how to use the CL API please refer to the BFCom exam-
ple that comes with BitFlow’s SDK.

45.1.1 BitFlow Specific Serial Functions

In addition to the functions required by the Camera Link specification, BitFlow has added
a few extra helper functions. The functions start with the prefix “clBF”. These function can
only be used with BitFlow frame grabbers. These functions require a separate BitFlow
serial reference pointer, which is a different reference pointer from the regular SL serial
functions (the reason involves the middleware DLL which obfuscates serial reference han-
dles). There are two ways to get this handle, either from the port number (as is used in
clSerialInit()) or from a board handle use for the rest of the BitFlow API. The following
shows how these functions are used.

Introduction BitFlow SDK

SDK-45-2 BitFlow, Inc. Version G.8

For the first example, the board is opened and initialize, then the serial handles are
retrieved based on the board handle:

void* serialRefPtr; // CL serial handle
void* serialBFRefPtr; // BitFlow serial handle

// Open and initialize the board
CiBrdOpen(&entry, &hBoard, BFSysInitialize);
// Get the CL serial handle from the board handle
clBFSerialInitFromBoardHandle(hBoard, &serialRefPtr);
// Get the BitFlow Serial handle from the board handle
clBFGetSerialRefFromBoardHandle(hBoard, &serialBFRefPtr);

// use the serial functions

// Write data using the standard CL function
clSerialWrite(serialRefPtr, Message, &Size, 100);

// Read whatever characters have come in using BF function
clBFSerialRead(serialBFRefPtr, Buf, &BufSize);

In the next example, the board is not open nor initialized, in this case we just want to
open the serial port and do some serial I/O.

void* serialRefPtr; // CL serial handle
void* serialBFRefPtr; // BitFlow serial handle

// Open the CL serial port and get a CL serial handle
clSerialInit(SerNum, &serialRefPtr);
// Get the CL serial handle from the board handle
clBFGetSerialRef(SerNum, &serialBFRefPtr);

// use the serial functions

// Write data using the standard CL function
clSerialWrite(serialRefPtr, Message, &Size, 100);

// Read whatever characters have come in using BF function
clBFSerialRead(serialBFRefPtr, Buf, &BufSize);

Camera Link Specification Serial Interface clFlushPort

Version G.8 BitFlow, Inc. SDK-45-3

45.2 clFlushPort

Prototype CLINT32 clFlushPort(hSerRef serialRef)

Description This function discards any bytes that are available in the input buffer.

Parameters serialRef

The value obtained by the clSerialInit function that describes the port to be flushed.

Returns

Comments

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

BFCL_ERROR_FLUSH_PORT An error occurred trying to flush the port.

clGetErrorText BitFlow SDK

SDK-45-4 BitFlow, Inc. Version G.8

45.3 clGetErrorText

Prototype CLINT32 clGetErrorText(const CLINT8* manuName, CLINT32 errorCode, CLINT8*
errorText, CLUINT32* errorTextSize)

Description This function converts an error code to error text which can be displayed in a dialog
box or in the standard I/O window.

Parameters *manuName

The manufacturer name in a NULL-terminated buffer. Manufacturer name is returned
from clGetPortInfo.

errorCode

The error code used to look up the appropriate error text. This code can be returned
from any function in this library.

*errorText

A caller allocated buffer which will contain a NULL terminated error description on
return.

*errorTextSize

As an input, this value is the size, in bytes, of the errorText buffer that is passed in. On
success, this value is the number of bytes that have been written into the buffer,
including the null termination character. On CL_ERR_BUFFER_TOO_SMALL error, this
value is the size of the buffer required to write the data text.

Returns

Comments This function first looks up the error code in clserial.dll to determine whether it is a
standard Camera Link error. If it is a non-standard error, this function passes the error
code to clserbit.dll, which returns the manufacturer specific error code.

CL_ERR_NO_ERR Function was successful.

CL_ERR_MANU_DOES_NOT_
EXIST

The requested manufactures’s dll does not
exist on your system.

CL_ERR_BUFFER_TOO_SMALL User buffer not large enough to hold data.

CL_ERR_ERROR_NOT_FOUND Could not find the error description for this
error code.

BFCL_ERROR_NULLPTR errorText and/or errorTextSize are null point-
ers.

Camera Link Specification Serial Interface clGetNumPorts

Version G.8 BitFlow, Inc. SDK-45-5

45.4 clGetNumPorts

Prototype CLINT32 clGetNumPorts(CLUINT32* numPorts)

Description This function returns the number of Camera Link serial ports installed in the computer
that are supported by clallserial.dll.

Parameters *numPorts

The number of Camera Link serial ports installed in the computer.

Returns

Comments

CL_ERR_NO_ERR Function was successful.

BFCL_ERROR_BRDOPEN Error opening board to determine if it is a
Camera Link board.

clGetNumBytesAvail BitFlow SDK

SDK-45-6 BitFlow, Inc. Version G.8

45.5 clGetNumBytesAvail

Prototype CLINT32 clGetNumBytesAvail(hSerRef serialRef, CLUINT32* numBytes)

Description This function outputs the number of bytes that are received, but not yet read out.

Parameters serialRef

The serial reference returned by clSerialInit.

*numBytes

The number of bytes currently available to be read from the port.

Returns

Comments

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

BFCL_ERROR_BYTES_AVAIL Error getting the number of bytes available.

Camera Link Specification Serial Interface clGetPortInfo

Version G.8 BitFlow, Inc. SDK-45-7

45.6 clGetPortInfo

Prototype CLINT32 clGetPortInfo(CLUINT32 serialIndex, CLINT8* manufacturerName, CLU-
INT32* nameBytes, CLINT8* portID, CLUINT32* IDBytes, CLUINT32* version)

Description This function provides information about the port specified by serialIndex.

Parameters serialIndex

Zero based index of the serial port you are finding the name for. Use clGetNumSerial-
Ports to determine the valid range of this parameter. This range will be 0 to numSerial-
Ports - 1.

*manufacuterName

Pointer to a user allocated buffer into which the function copies the manufacturer
name. The returned name is NULL terminated.

*nameBytes

As an input parameter, this value is the size of the manufacturerName buffer, includ-
ing the NULL termination. As an output parameter, this parameter is the number of
bytes written into the name buffer. If the provided name buffer is not large enough,
this value is the number of required bytes.

*portID

The identifier for the port.

*IDBytes

As an input parameter, this value is the size of the portID buffer, including
the NULL termination. As an output parameter, this value is the number of bytes writ-
ten into the portID buffer. If the provided portID buffer is not large enough, this value
is the number of required bytes.

*version

The version of the Camera Link specifications with which the framegrabber complies.

Returns

Comments

CL_ERR_NO_ERR Function was successful.

CL_ERR_BUFFER_TOO_
SMALL

User buffer not large enough to hold data.

CL_ERR_INVALID_INDEX serialIndex was not a valid index.

clGetSupportedBaudRates BitFlow SDK

SDK-45-8 BitFlow, Inc. Version G.8

45.7 clGetSupportedBaudRates

Prototype CLINT32 clGetSupportedBaudRates(hSerRef serialRef, CLUINT32* baudRates)

Description This function returns the valid baud rates that the framegrabber supports for serial
communication.

Parameters serialRef

The serial reference returned by clSerialInit.

*baudRates

Indicates which baud rates are supported by the framegrabber. This is represented as
a bitfield with the following constants:

CL_BAUDRATE_9600 - 9600 baud rate. Value = 1.
CL_BAUDRATE_19200 - 19200 baud rate. Value = 2.
CL_BAUDRATE_38400 - 38400 baud rate. Value = 4
CL_BAUDRATE_57600 - 57600 baud rate. Value = 8.
CL_BAUDRATE_115200 - 115200 baud rate. Value = 16
CL_BAUDRATE_230400 - 230400 baud rate. Value = 32.
CL_BAUDRATE_460800 - 460800 baud rate. Value = 64.
CL_BAUDRATE_921600 - 921600 baud rate. Value = 128.

Returns

Comments

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

CL_ERR_FUNCTION_NOT_
FOUND

Function does not exist in the manufacturer’s
library.

BFCL_ERROR_NULLPTR The baudRate parameter has a NULL pointer.

Camera Link Specification Serial Interface clSerialClose

Version G.8 BitFlow, Inc. SDK-45-9

45.8 clSerialClose

Prototype void clSerialClose(hSerRef serialRef)

Description Closes the serial device and cleans up the resources associated with serialRef.

Parameters serialRef

The value obtained from the clSerialInit function.

Returns None.

Comments

clSerialInit BitFlow SDK

SDK-45-10 BitFlow, Inc. Version G.8

45.9 clSerialInit

Prototype CLINT32 clSerialInit(CLUNT32 serialIndex, hSerRef* serialRefPtr)

Description This function initializes the device referred to by serialIndex, and returns a pointer to
an internal serial reference structure.

Parameters serialIndex

The number of the serial device in the system to initialize. This number is a zero-based
index value. This n number of serial devices in the system, the serialIndex has a range
0 to (n-1).

*serialRefPtr

Points to a value that contains, on a successful call, a pointer to the vendor-specific ref-
erence to the current session.

Returns

Comments This function initializes the serial device referred to by serialIndex. The serial device is
the UART on the boards with Camera Link interfaces. If, for example, two R3-CL
boards are installed in a system there are two serial devices available, serial device 0
on board 0 and serial device 1 on board 1. If there is, for example, a RoadRunner and
a RoadRunnerCL installed in the system, there is only one serial device available.

CL_ERR_NO_ERR Function was successful.

CL_ERR_PORT_IN_USE Port is valid but cannot be opened because it is
in use.

CL_ERR_INVALID_INDEX Not a valid index.

BFCL_ERROR_SERNOTFOUND The serial device specified by serialIndex was
not found.

BFCL_ERROR_BRDNOTFOUND There where no RoadRunner boards found.

BFCL_ERROR_BRDOPEN Error opening board.

BFCL_ERROR_NOSIGNAL The interrupt signal could not be created.

BFCL_ERROR_NOSTRUC Memory for struction could not be allocated.

BFCL_ERROR_THRE The transmitter holding register was not empty
after initialization.

BFCL_ERROR_TEMT The transmitter buffer was not empty after ini-
tialization.

BFCL_ERROR_FIFO_EN Initialization failed to enable the FIFOs.

BFCL_ERROR_RCVRFIFO Error with the receiver FIFO during initializa-
tion.

Camera Link Specification Serial Interface clSerialRead - Deprecated as of CL
2.1

Version G.8 BitFlow, Inc. SDK-45-11

45.10 clSerialRead - Deprecated as of CL 2.1

Prototype CLINT32 clSerialRead(hSerRef serialRef, CLINT8* buffer, CLUINT32* numBytes,
CLUINT32 serialTimeout)

Description This function reads the serial device referenced by serialRef.

Parameters *serialRef

The value obtained from the clSerialInit function.

*buffer

Points to a user-allocated buffer. Upon a successful call, buffer contains the data read
from the serial device. If there is an error or timeout, the buffer will be returned empty.

*bufferSize

The number of bytes requested by the caller.

serialTimeout

Indicates the time-out in milliseconds.

Returns

Comments This function reads the serial device referenced by serialRef. This function fills the
host buffer, buffer, until bufferSize bytes have been received from the camera. If
bufferSize bytes have not been received by serialTimeout milliseconds, the function
will return a time out error, the buffer will be returned empty and bufferSize will be
set to zero.

CL_ERR_NO_ERR Function was successful.

CL_ERR_TIMEOUT The timeout has elapsed.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

BFCL_ERROR_NULLPTR A NULL pointer was passed into the function.

BFCL_ERROR_RCVRFIFO Error with the receiver FIFO during initializa-
tion.

BFCL_WARN_BUFFULL The buffer was full before the read was com-
plete.

clSerialReadEx BitFlow SDK

SDK-45-12 BitFlow, Inc. Version G.8

45.11 clSerialReadEx

Prototype CLINT32 clSerialReadEx(hSerRef serialRef, CLINT8* buffer, CLUINT32* numBytes,
CLUINT32 serialTimeout)

Description This function reads the serial device referenced by serialRef.

Parameters *serialRef

The value obtained from the clSerialInit function.

*buffer

Points to a user-allocated buffer. Upon a successful call, buffer contains the data read
from the serial device.

*bufferSize

The size of the buffer in bytes. Upon a successful call contains the number of bytes
read from the device.

serialTimeout

Indicates the time-out in milliseconds.

Returns

Comments This function reads the serial device referenced by serialRef. This function fills the
host buffer, buffer, until bufferSize bytes have been received from the camera or the
timeout has expired. When the function returns, numBytes will contain the number of
bytes read from the device.

Note: This function was added in to the Camera Link specifiaction in revision 2.1. The
BitFlow SDK 6.4 and later support the Camera Link revision 2.1.

Note: This function differs in subtle but important wasy from the function clSerialRead.
Please see the CL 2.1 specification for more details.

CL_ERR_NO_ERR Function was successful.

CL_ERR_TIMEOUT The timeout has elapsed.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

BFCL_ERROR_NULLPTR A NULL pointer was passed into the function.

BFCL_ERROR_RCVRFIFO Error with the receiver FIFO during initializa-
tion.

BFCL_WARN_BUFFULL The buffer was full before the read was com-
plete.

Camera Link Specification Serial Interface clSerialWrite

Version G.8 BitFlow, Inc. SDK-45-13

45.12 clSerialWrite

Prototype CLINT32 clSerialWrite(hSerRef serialRef, CLINT8* buffer, CLUINT32* bufferSize,
CLUINT32 serialTimeout)

Description Writes the data in the buffer to the serial device referenced by serialRef.

Parameters *serialRef

The value obtained from the clSerialInit function.

*buffer

Contains data to write to the serial port.

*bufferSize

Contains the buffer size indicating the maximum number of bytes to be written. Upon
a successful call, bufferSize contains the number of bytes written to the serial device.

serialTimeout

Indicates the time-out in milliseconds.

Returns

Comments This function will try and write the data in buffer to the serial device for the number of
milliseconds specified by serialTimeout. If the data could not be written within that
time, the CL_ERR_TIMEOUT error will be returned.

CL_ERR_NO_ERR Function was successful.

CL_ERR_TIMEOUT Timed out waiting to write data.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

BFCL_ERROR_NULLPTR A NULL pointer was passed into the function.

clSetBaudRate BitFlow SDK

SDK-45-14 BitFlow, Inc. Version G.8

45.13 clSetBaudRate

Prototype CLINT32 clSetBaudRate(hSerRef serialRef, CLUINT32 baudRate)

Description This function sets the baud rate for the serial port on the framegrabber.

Parameters serialRef

The value obtained from the clSerialInit function.

baudRate

The baud rate to be set on the serial port. Can be one of the following:

CL_BAUDRATE_9600 - 9600 baud rate.
CL_BAUDRATE_19200 - 19200 baud rate.
CL_BAUDRATE_38400 - 38400 baud rate.
CL_BAUDRATE_57600 - 57600 baud rate.
CL_BAUDRATE_115200 - 115200 baud rate.
CL_BAUDRATE_230400 - 230400 baud rate.
CL_BAUDRATE_460800 - 460800 baud rate.
CL_BAUDRATE_921600 - 921600 baud rate.

Returns

Comments Use the clGetSupportBaudRates function to determine supported baud rates.

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The serial reference is not valid.

CL_ERR_BAUD_RATE_NOT_SUP-
PORTED

The requested baud rate is not sup-
ported.

Camera Link Specification Serial Interface clBFSerialSettings

Version G.8 BitFlow, Inc. SDK-45-15

45.14 clBFSerialSettings

Prototype int clBFSerialSettings(void* serBFRef, unsigned int baudRate, unsigned int dataBits,
unsigned int parity, unsigned int stopBits)

Description Changes the serial device settings.

Parameters *serBFRef

The BitFlow serial handle.

baudRate

Specifies the baud rate setting. The baud rate can be set to one of the following:

CL_BAUDRATE_9600 - 9600 baud rate.
CL_BAUDRATE_19200 - 19200 baud rate.
CL_BAUDRATE_38400 - 38400 baud rate.
CL_BAUDRATE_57600 - 57600 baud rate.
CL_BAUDRATE_115200 - 115200 baud rate.
CL_BAUDRATE_230400 - 230400 baud rate.
CL_BAUDRATE_460800 - 460800 baud rate.
CL_BAUDRATE_921600 - 921600 baud rate.

dataBits

Specifies the number of data bits in each transmitted or received in each serial char-
acter. The number of data bits can be set to one of the following:

DataBits_5 - Five bit serial characters
DataBits_6 - Six bit serial charaters
DataBits_7 - Seven bit serial charaters
DataBits_8 - Eight bit serial characters

parity

Specifies the parity to be used if any. The parity can be set to one of the following:

ParityEven - Even parity.
ParityOdd - Odd parity.
ParityNone - No parity.

stopBits

Specifies the number of stop bits transmitted and received in each serial character.
The number of stop bits can be set to one of the following:

StopBits_1 - One stop bit.
StopBits_15 - One and a half stop bits.
StopBits_2 - Two stop bits.

clBFSerialSettings BitFlow SDK

SDK-45-16 BitFlow, Inc. Version G.8

Returns

Comments This is a non-standard function which allows for changing of serial communications
parameters that are not supported by the normal CL serial API.

CL_ERR_NO_ERR Function was successful.

BFCL_ERROR_BAUDRATE An invalid baud rate was specified.

BFCL_ERROR_DATABITS An invalid number of data bits was specified.

BFCL_ERROR_PARITY An invalid parity parameter was specified.

BFCL_ERROR_15STOP5-
DATA

To use 1.5 number of stop bits, 5 bit data must be
used.

BFCL_ERROR_2STOP5-
DATA

Two stop bits can not be used with five data bits.

BFCL_ERROR_STOPBITS An invalid number of stop bits was specified.

Camera Link Specification Serial Interface clBFSerialRead

Version G.8 BitFlow, Inc. SDK-45-17

45.15 clBFSerialRead

Prototype int clBFSerialRead(void* serBFRef, char* buffer, unsigned int* bufferSize)

Description This function reads the serial device referenced by serBFRef.

Parameters *serBFRef

The BitFlow serial handle.

*buffer

Points to a user-allocated buffer. Upon a successful call, buffer contains the data read
from the serial device

*bufferSize

As an input parameter, this contains the maximum number of bytes that the buffer can
accommodate. Upon a successful call, bufferSize is the number of bytes that were
read successfully from the serial device.

Returns

Comments This function is similar to clSerialRead function except that without a timeout value this
function will wait efficiently for data to be read from the serial port. Once there is data
at the port this function will read the data out and return it through the buffer param-
eter. The bufferSize paramerter will be returned with the number of bytes read into
buffer.

In order to force this function to return will waiting for data on the serial port, use the
clBFSerialCancelRead function.

If the user knows how many bytes are to be received they can use the clSerialRead
function. This function is useful when the user is unsure how many bytes are being
received. In the case of not knowing how many bytes are being received, the user can
call this function in a loop, and every time data is received this function will return the
data until there is nothing left to return. This is how this function is used in the exam-
ple application BFCom, that comes with the BitFlow SDK. In BFCom, there is a read
thread that is started when the application starts up. The read thread calls this function
in a loop until the application is closed. While the application is opened, the read
thread takes any returned data from this function and displays it to screen.

CL_ERR_NO_ERR Function was successful.

BFCL_WARN_SIG_CAN-
CEL

The function was force to return by the clBFSerialCa-
ncelRead function.

BFCL_ERROR_RCVRFIFO An error occurred waiting for data on the port.

clBFSerialCancelRead BitFlow SDK

SDK-45-18 BitFlow, Inc. Version G.8

45.16 clBFSerialCancelRead

Prototype int clBFSerialCancelRead(void* serBFRef)

Description This function cancels the serial interrupt signal that clBFSerialRead waits for, forcing
the clBFSerialRead function to return.

Parameters *serBFRef

The BitFlow serial handle.

Returns

Comments This function is for use in conjunction with the function clBFSerialRead, which does
not time out. You will need to call clBFSerialCancelRead from another thread in order
to get clBFSerialRead to return. When it does return, it will indicate that the wait was
cancelled (rather than new bytes coming from the camera).

CL_ERR_NO_ERR Function was successful.

Camera Link Specification Serial Interface clBFGetBaudRate

Version G.8 BitFlow, Inc. SDK-45-19

45.17 clBFGetBaudRate

Prototype int clBFGetBaudRate(void* serBFRef, unsigned int* baudRate)

Description This function returns the current baud rate of the serial port.

Parameters serBFRef

The BitFlow serial handle.

*buadRate

The returned baud rate for the serial port. The returned rate can be one of the follow-
ing:

CL_BAUDRATE_9600 - 9600 baud rate.
CL_BAUDRATE_19200 - 19200 baud rate.
CL_BAUDRATE_38400 - 38400 baud rate.
CL_BAUDRATE_57600 - 57600 baud rate.
CL_BAUDRATE_115200 - 115200 baud rate.
CL_BAUDRATE_230400 - 230400 baud rate.
CL_BAUDRATE_460800 - 460800 baud rate.
CL_BAUDRATE_921600 - 921600 baud rate.

Returns

Comments The standard CL serial API does not have a function to get the current baud rate, this
BitFlow CL API function fills this need.

CL_ERR_NO_ERR Function was successful.

CL_ERR_BAUD_RATE_NOT_SUP-
PORTED

Could not determine the current baud rate.

clBFGetSerialRef BitFlow SDK

SDK-45-20 BitFlow, Inc. Version G.8

45.18 clBFGetSerialRef

Prototype int clBFGetSerialRef(unsigned int portNum, void** serBFRefPtr)

Description This function is used to get the BitFlow serial handle for use with all clBF functions for
a given port number.

Parameters portNum

The number of the port for which the serial reference is requested.

serBFRefPtr

A pointer to the returned BitFlow serial handle. This reference should be used for any
calls to clBFSerialSetting, clBFSerialRead, clBFSerialCancelRead and clBFGetBau-
dRate functions.

Returns

Comments This function returns a BitFlow serial handle for a given port number. The BitFlow
serial handle is for use with the BitFlow specific serial functions (listed in this chapter).
The port number provided to this function should be the same as the port number
provided clSerialInit.

Note: The BitFlow serial handle returned from this function is different from the CL
serial handle returned from clSerialInit. The former is for use with the BitFlow serial
functions and the latter is for use with the CL serial functions. This is due to the
obsufacation that takes place in the middleware DLL, “clallserial.dll”.

CL_ERR_NO_ERR Function was successful.

BFCL_ERROR_SERNOTFOUND Could not determine the serial reference.

Camera Link Specification Serial Interface clBFGetSerialRefFromBoardHandle

Version G.8 BitFlow, Inc. SDK-45-21

45.19 clBFGetSerialRefFromBoardHandle

Prototype int clBFGetSerialRefFromBoardHandle(Bd hBoard, void** serBFRefPtr)

Description This function is used to get the BitFlow serial handle for use with all clBF functions for
a given board handle.

Parameters hBoard

A handle to a BitFlow board

serBFRefPtr

A pointer to the returned BitFlow serial handle. This reference should be used for any
calls to clBFSerialSetting, clBFSerialRead, clBFSerialCancelRead and clBFGetBau-
dRate functions.

Returns

Comments This function returns a BitFlow serial handle for a board handle. The BitFlow serial
handle is for use with the BitFlow specific serial functions (listed in this chapter). The
board handle provided to this function must be the handle to a board already
opened by one of the board open functions.

Note: The BitFlow serial handle returned from this function is different from the CL
serial handle returned from clSerialInit. The former is for use with the BitFlow serial
functions and the latter is for use with the CL serial functions. This is due to the
obsufacation that takes place in the middleware DLL, “clallserial.dll”.

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The board handle is invalid.

BFCL_ERROR_SERNOTFOUND Could not determine the serial reference.

CL_XXXX Can also return all the values that clSerial-
Init can return.

clBFSerialInitFromBoardHandle BitFlow SDK

SDK-45-22 BitFlow, Inc. Version G.8

45.20 clBFSerialInitFromBoardHandle

Prototype int clBFSerialInitFromBoardHandle(Bd hBoard, void** serialRefPtr)

Description This function is used to get the CL serial handle for use with all CL functions for a
given board handle.

Parameters hBoard

A handle to a BitFlow board

serialRefPtr

A pointer to the returned CL serial reference pointer. This reference should be used
for any calls to CL serial API.

Returns

Comments This function returns a CL serial handle for a board handle. The CL serial handle is for
use with the CL serial functions (listed in this chapter). This is the same type of handle
as is returned from clSerialInit and can be used in the same way. The board handle
provided to this function must be the handle to a board already opened by one of the
board open functions.

This function also opens and initialized the serial port, just like clSerialInit. The differ-
ence is that this function opens the serial port based on a board handle, while clSerial-
Init open the serial port based on a port number.

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The board handle is invalid.

CL_XXXX Can also return all the values that clSerial-
Init can return.

Camera Link Specification Serial Interface clBFSerNumtFromBoardHandle

Version G.8 BitFlow, Inc. SDK-45-23

45.21 clBFSerNumtFromBoardHandle

Prototype int clBFSerNumtFromBoardHandle(Bd hBoard, PBFU32 pSerNum)

Description This function is used to get the CL serial port number for the given board.

Parameters hBoard

A handle to a BitFlow board

pSerNum

A pointer to the returned port number.

Returns

Comments This function returns can be use to get the CL port number for the given board han-
dle. Not that board number will equal port number if all the frame grabbers in the sys-
tem are Camera Link. However, this relationship does not hold if there are non-CL
board in the system.

CL_ERR_NO_ERR Function was successful.

CL_ERR_INVALID_REFERENCE The board handle is invalid.

clBFSerNumtFromBoardHandle BitFlow SDK

SDK-45-24 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-46-1

Display Functions

Chapter 46

46.1 Introduction

The BitFlow SDK includes a simple set of functions for displaying live video in a window.
The functions exists in a stand alone DLL and have their own API. They are independent of
any of the other frame grabber access and control functions and can be used to display
images from any source.

The display surface window is separate and independent from the main calling applica-
tions window. The display surface window can be moved anywhere on the desktop and
can be independently resized, panned and scrolled.

To use these functions, first create a display surface. An application can create as many
display surfaces as it needs. Next, get the bitmap that backs the display surface and pass
it to any of the acquisition setup functions (e.g. CiAqSetup). Finally, program the LUTs on
the board to match the VGA palette, if necessary, and your application is ready to display
images.

The display surface window can be closed by the user, in which case the display surface
still exists, it is just not visible. You can detect this condition from your application by call-
ing one of the IsOpen functions. The display surface itself is deleted by calling one of the
display surface close functions. You must make sure that the board is not DMAing to the
surface’s bitmap buffer when you delete the surface. Always make sure the board is fro-
zen before calling the close function. If you call the close function when the window is still
visible, the window will be automatically closed before the display surface is deleted.

DispSurfCreate BitFlow SDK

SDK-46-2 BitFlow, Inc. Version G.8

46.2 DispSurfCreate

Prototype BOOL DispSurfCreate(PBFS32 DspsurfHandle, BFU32 Dx, BFU32 Dy, BFS32 Pix-
Depth, HWND HwndOwner)

Description Creates a display surface (video window) on the desktop, above the given parent win-
dow.

Parameters DspsurfHandle

Pointer to a BFS32. Should be -1 when the function is first called. When the function
returns, the value will be a handle used to refer to the surface in subsequent function
calls.

Dx

Horizontal size of the destination bitmap in pixels. This is not the size of the window
but the size of the bitmap, and should be the same as the X size of the camera.

Dy

Vertical size of the destination bitmap in lines. This is not the size of the window but
the size of the bitmap, and should be the same as the Y size of the camera.

PixDepth

Number of bits per pixel. Currently this value must = 8, 24, or 32.

HwndOwner

Window’s handle to the parent application’s window. This forces the resulting display
surface to be a child of the application’s window. If this parameter is NULL, the dis-
play surface will be independent.

Returns

Comments This function creates a display surface on the Windows desktop. A display surface is
just a window that can display images. The window can be resized (up to the size of
the camera’s image), panned, scrolled, and moved like any other window. Creating a
display surface also creates a bitmap.

This bitmap can be the destination of DMA operations from the board. Call the func-
tion DispSurfGetBitmap to get a pointer to the resulting bitmap’s memory buffer. This
pointer can be passed to any of the acquisition setup functions.

The window on the display is not automatically updated. The application must call
DispSurfBlit to get new data in the bitmap on to the actual display.

TRUE If successful

FALSE Error creating bitmap.

Display Functions DispSurfGetBitmap

Version G.8 BitFlow, Inc. SDK-46-3

46.3 DispSurfGetBitmap

Prototype BOOL DispSurfGetBitmap(BFS32 DspsurfHandle, PBFVOID *pBitmap)

Description Gets a pointer to the memory buffer of the bitmap behind a display surface.

Parameters DspsurfHandle

Handle to display surface.

*pBitmap

Pointer to a PBFVOID. When this function returns, the pointer will point to the bit-
map’s memory buffer.

Returns

Comments This function gets a pointer to the actual memory buffer of a bitmap that is used by a
display surface. Like any other memory, this pointer can be read or written to directly.
It can also be the destination of DMA operations. This pointer can be passed as the
destination parameter when calling the CiAqSetup() function.

The pointer points to valid memory as long as the display surface exists.

TRUE If successful

FALSE Cannot get the bitmap or display surface, handle is
invalid.

DispSurfTop BitFlow SDK

SDK-46-4 BitFlow, Inc. Version G.8

46.4 DispSurfTop

Prototype BOOL DispSurfTop(BFS32 DspsurfHandle)

Description Puts the display surface window at the top of the Z order.

Parameters DspsurfHandle

Handle to display surface.

Returns

Comments This function moves the display surface window to the top of the Z order. This means
the window will be on top of all other windows.

TRUE If successful

FALSE Error moving window to top or display surface does
not exist.

Display Functions DispSurfBlit

Version G.8 BitFlow, Inc. SDK-46-5

46.5 DispSurfBlit

Prototype BOOL DispSurfBlit(BFS32 DspsurfHandle)

Description Updates the display surface window with the data currently in the display surface’s bit-
map.

Parameters DspsurfHandle

Handle to bitmap.

Returns

Comments This function updates the display surface window (the image you see on the VGA)
with the data currently in the bitmap. Changing the data in a bitmap does not auto-
matically change the data display window. This function must be called every time the
bitmap is updated. A simple way to keep a display surface window updated is to cre-
ate a thread that waits for a end of DMA signal. Whenever the signal occurs, call this
function to update the display.

This function can also be called if you have written your own data into the bitmap and
want it to be displayed.

TRUE If successful

FALSE Error blitting or display surface does not exist.

DispSurfChangeSize BitFlow SDK

SDK-46-6 BitFlow, Inc. Version G.8

46.6 DispSurfChangeSize

Prototype BOOL DispSurfChangeSize(BFS32 DspsurfHandle, BFU32 Dx, BFU32 Dy, BFU32
PixDepth)

Description Changes the size of a display surface bitmap. Does not change the window size.

Parameters DspsurfHandle

Handle to bitmap.

Dx

New horizontal size of the destination bitmap in pixels. This is not the size of the win-
dow but the size of the frame, and should be the same as the X size of the camera.

Dy

New vertical size of the destination bitmap in lines. This is not the size of the window
but the size of the frame, and should be the same as the Y size of the camera.

PixDepth

Number of bits per pixel, currently this value must = 8, 24, 32.

Returns

Comments This function allows you to change the size of a bitmap without destroying and recre-
ating the display surface. Essentially, this function destroys the current bitmap and
creates a new one at the given size. The only purpose of this function is to handle on-
the-fly changes of acquisition size (as might happen when changing the current cam-
era). This does not change the size of the window, and can only be done through the
GUI.

TRUE If successful

FALSE Error changing size or display surface does not exist.

Display Functions DispSurfGetLut

Version G.8 BitFlow, Inc. SDK-46-7

46.7 DispSurfGetLut

Prototype BOOL DispSurfGetLut(BFS32 DspsurfHandle, PBFU8 pLut)

Description Returns a LUT that will match the palette that has been created in the display surface.

Parameters DspsurfHandle

Handle to bitmap.

pLut

Pointer to an already allocated byte array of 256 bytes.

Returns

Comments In order to optimize display speed, the palette of the bitmap in a display surface and
the VGA’s palette must be matched. When the display surface is created, the palettes
are automatically matched for the current VGA color mode. However, the image must
also be mapped to match this palette (the palette matching does not guarantee that
all colors will be available). The board’s LUTs can perform this matching. Use this func-
tion to get the correct values to program the LUT with.

This function returns an array of bytes which can be passed to the LUT programming
function. Use 8-bit mode and write this array to all four 8-bit lanes.

Note: This function is only required if your VGA is in 8-bit (256) color mode.

Note: This function is only useful if the board being used has LUTs.

TRUE If successful

FALSE Error getting LUT or display surface does not exist.

DispSurfClose BitFlow SDK

SDK-46-8 BitFlow, Inc. Version G.8

46.8 DispSurfClose

Prototype BOOL DispSurfClose(BFS32 DspsurfHandle)

Description Closes a display surface.

Parameters DspsurfHandle

Handle to display surface.

Returns

Comments This function closes and destroys a display surface. The bitmap associated with the
surface will be destroyed. The window on the desktop will be closed.

The display surface can also be closed from the GUI by the user.

TRUE If successful

FALSE Error getting LUT or display surface does not exist.

Display Functions DispSurfIsOpen

Version G.8 BitFlow, Inc. SDK-46-9

46.9 DispSurfIsOpen

Prototype BOOL DispSurfIsOpen(BFS32 DspsurfHandle)

Description Check to see if a display surface is open.

Parameters DspsurfHandle

Handle to display surface.

Returns

Comments These functions provide a simple way to check if a display surface has already been
opened, and thus the handle can be used for subsequent commands. It also is a good
way to check if the user has closed the window.

TRUE If the surface exists and its window is open on the
desktop.

FALSE If the surface does not exist or the window has been
closed.

DispSurfOffset BitFlow SDK

SDK-46-10 BitFlow, Inc. Version G.8

46.10 DispSurfOffset

Prototype BOOL DDrawSurfOffset(BFS32 DspsurfHandle, BFS32 DX, BFS32 DY)

Description Moves the display surface window.

Parameters DspsurfHandle

Handle to display surface.

DX

Amount to offset display surface horizontally (in screen pixels).

DY

Amount to offset display surface vertically (in screen pixels).

Returns

Comments These functions move the display surface window on the VGA. The parameters DX
and DY are the amount to move the surface relative to its current position. The units
are in terms of screen pixels.

TRUE If successful

FALSE On error.

Display Functions DispSurfSetWindow

Version G.8 BitFlow, Inc. SDK-46-11

46.11 DispSurfSetWindow

Prototype BOOL DispSurfSetWindow(BFS32 DspsurfHandle BFU32 Left,BFU32 Top, BFU32
Width, BFU32 Height)

Description Sets the location and the size of the display surface window.

Parameters DspsurfHandle

Handle to display surface.

Left

Sets the X coordinate of the upper left corner of the window (in screen pixels).

Top

Sets the Y coordinate of the upper left corner of the window (in screen pixels).

Width

Sets the width of the window (in screen pixels).

Top

Sets the height of the window (in screen pixels).

Returns

Comments These functions set the location and the size of the display surface window on the
VGA. The parameters Left and Top set the location of the window. The upper left
corner of the workspace is (0,0). The parameters Width and Height set the size of the
window. If the size you set the size of the window bigger than the display surface’s bit-
map, the new sizes will be reduced to the size of the bitmap. The units are in terms of
screen pixels.

TRUE If successful

FALSE On error.

DispSurfGetWindow BitFlow SDK

SDK-46-12 BitFlow, Inc. Version G.8

46.12 DispSurfGetWindow

Prototype BOOL DispSurfGetWindow(BFS32 DspsurfHandle PBFU32 pLeft,PBFU32 pTop,
PBFU32 pWidth, PBFU32 pHeight)

Description Gets the location and the size of the display surface window.

Parameters DspsurfHandle

Handle to display surface.

pLeft

Contains the current value of the X coordinate of the upper left corner of the window
(in screen pixels).

pTop

Contains the current value of the Y coordinate of the upper left corner of the window
(in screen pixels).

pWidth

Contains the current value of the width of the window (in screen pixels).

pTop

Contains the current value of the height of the window (in screen pixels).

Returns

Comments These functions gets the location and the size of the display surface window. The
parameters pLeft and pTop contain the location of the window. The upper left corner
of the workspace is (0,0). The parameters pWidth and pHeight return the size of the
window. The units are in terms of screen pixels.

TRUE If successful

FALSE On error.

Display Functions DispSurfTitle

Version G.8 BitFlow, Inc. SDK-46-13

46.13 DispSurfTitle

Prototype BOOL DispSurfTitle(BFS32 DspsurfHandle, PBFCHAR Title)

Description Changes the title on the display surface window.

Parameters DspsurfHandle

Handle to display surface.

Title

Character string to make the title bar of the window to.

Returns

Comments These functions give the user the ability to customize the title bar of display surface
windows.

TRUE If successful

FALSE On error.

DispSurfDisableClose BitFlow SDK

SDK-46-14 BitFlow, Inc. Version G.8

46.14 DispSurfDisableClose

Prototype BOOL DispSurfDisableClose(BFS32 DspsurfHandle, BFBOOL Enabled)

Description Enables or disables the ability of the user to close display surface window.

Parameters DspsurfHandle

Handle to display surface.

Enabled

Used to disable or enable the ability of the user to close the display surface:

TRUE - The user will not be able to close the display surface.
FALSE - The user will be able to close the display surface.

Returns

Comments This function provides the ability to prevent the user of an application from closing the
display surface. This is useful where an application opens a display surface and would
like that display surface to remain open until the application is closed.

To use this function properly, create the display surface with the DispSurfCreate func-
tion. After creation of the display surface, call this function with the Enabled parame-
ter set to TRUE to prevent the display surface from being closed.

By default, if the display surface is created and this function is not called, the display
surface will be able to be closed by the user of the application.

TRUE If successful

FALSE On error.

Display Functions DispSurfFormatBlit

Version G.8 BitFlow, Inc. SDK-46-15

46.15 DispSurfFormatBlit

Prototype BOOL DispSurfFormatBlit(BFS32 DspSurfHandle, PBFU32 pBuffer, BFU32 Pix-
Depth, BFU32 Options)

Description Formats and updates the display surface window with the image data pointed to by
pBuffer.

Parameters DspSurfHandle

Handle to bitmap.

pBuffer

A pointer to the image data stored in memory.

PixDepth

The pixel depth of the image data in bits.

Options

 Options for formatting the image data is as follows:

BFDISP_FORMAT_NORMAL - Format the data to display the most signifi-
cant 8-bits.

BFDISP_FORMAT_PACKED - Use when capturing packed data that is
greater than 8 bits per pixels. Data is byte swapped.

BFDISP_FORMAT_PACKED_NOSWAP - Used when capturing packed data
that is greater than 8 bits per pixels. Data is not byte swapped.

BFDISP_FORMAT_RGB_SWAP - Use when capturing 24-bit RGB data that
needs the R and G swapped for correct display in Windows.

Returns

Comments This function is identical to the DispSurfBlit function except that this function will for-
mat the image data to be displayed correctly on the display surface. After the image
data is formatted for display, the display surface window is updated.

The formatting of the image data is based on the pixel depth of the image and the
format options. Under normal formatting, the upper 8 most significant bits are dis-
played.

TRUE If successful

FALSE Error blitting or display surface does not exist.

DispSurfSetZoom BitFlow SDK

SDK-46-16 BitFlow, Inc. Version G.8

46.16 DispSurfSetZoom

Prototype BOOL DispSurfSetZoom(BFS32 DspsurfHandle, BFU32 Zoom)

Description Sets the zoom value of the display surface window.

Parameters DspsurfHandle

Handle to display surface.

Zoom

The amount of zoom to set the window to. Permitted values are:

10 - 10%
25 - 25%
50 - 50%
100 - 100% (no zoom)
200 - 200%
400 - 400%
800 - 800%

Returns

Comments This functions sets the zoom value for the display surface. This function has the same
affect s changing the zoom using the display surface menu. Only the values like above
are supported.

TRUE If successful

FALSE On error.

Display Functions DispSurfGetZoom

Version G.8 BitFlow, Inc. SDK-46-17

46.17 DispSurfGetZoom

Prototype BOOL DispSurfGetZoom(BFS32 DspsurfHandle, PBFU32 pZoom)

Description Gets the current zoom value of the display surface window.

Parameters DspsurfHandle

Handle to display surface.

pZoom

Returns the current amount of zoom. It will be one of the following:

10 - 10%
25 - 25%
50 - 50%
100 - 100% (no zoom)
200 - 200%
400 - 400%
800 - 800%

Returns

Comments This functions gets the zoom value for the display surface.

TRUE If successful

FALSE On error.

DispSurfGetZoom BitFlow SDK

SDK-46-18 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-47-1

BitFlow Common Functions Introduction

Chapter 47

47.1 Overview

The functions in the following chapters belong to the BF API. This API is the foundation for
all the other APIs in this manual. Essentially these functions provide low level access to the
hardware. The BF functions work on all board families, provided the memory being
accesses is actually mounted on the target board. In general, there is rarely a need to call
these functions, as the higher level APIs provide easy access to all of the board functional-
ity. However, occasionally some customization of a function or the board’s mode is
needed, and the BF functions can be used to get right down to the hardware.

Overview BitFlow SDK

SDK-47-2 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-48-1

CoaXPress specific functions

Chapter 48

48.1 Introduction

The functions described in this chapter can be used with any BitFlow board with a CoaX-
Press (CXP) interface. The CXP boards generally work the same as the Camera Link
boards with regards to acquisition, triggering, DMA etc. However, the CXP boards have
some special features that require special function for managing the CXP portions of the
boards. These CXP specific functions are listed in this chapter.

48.1.1 CoaXPress Camera Control

The CoaXPress specification (unlike Camera Link specification) explicitly dictates the pro-
tocol to be used to control CXP devices (e.g. a camera) from a CXP host (e.g. a frame
grabber). The protocol is based on GenICam, which is a well developed specification
used by many camera/frame grabber interconnect standards. GenICam consists of a few
different components. Generally they can be grouped in to a low level specification for
how a host controls a device, and a set of high level interfaces which provide APIs for
applications to control devices and acquire data from devices. It is beyond the scope of
this manual to describe GenICam in detail. For more information on GenICam please see
www.genicam.org.

At the lowest level, GenICam specifies that all devices (cameras) should be controlled by
“register based” access. In this case, “register based” means that all camera functions are
controlled by read/writing from/to various addresses in the device. Some addresses are
the same for all devices, and are dictated by the CoaXPress specification, other addresses
can be used however the manufacturer sees fit. GenICam provides a standardized mech-
anism for the camera maker to provide a list of the addresses and the features controlled
by each address.

BitFlow provides full GenICam support. Included is an GenICam application which pro-
vides a GUI for full control of all of your camera’s features. There is also a GenICam API
which provides access into the GenICam system for your own application. However, we
also provide a very simple low level register read/write API which is easy to use, and some
time the best option when only minor changes are needed in the camera configuration.
These functions are documented in the following section.

48.1.2 Example Usage

To see examples how these functions are used, refer to the source code installed by the
SDK: “\BitFlow SDK X.XX\Examples\CXPRegTool”.

BFCXPReadReg BitFlow SDK

SDK-48-2 BitFlow, Inc. Version G.8

48.2 BFCXPReadReg

Prototype BFCAPI BFCXPReadReg(Bd Board, BFU32 Link, BFU32 Address, PBFU32 pValue)

Description Read a register from a CoaXPress device.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value to 0xff.

Address

Address to read from.

pValue

Pointer to a 32-bit integer which will contain the requested value when this function
returns.

Returns

Comments This function is used to read a single 32-bit register from the CXP device attached to
link number link on the VFG whose handle is Board. If the link number is not known,
just set link equal to 0xff. The function will return with the 32-bit value in the parame-
ter pValue unless there is a problem, then it will return an error.

With the exception of the CXP boot strap registers, each camera’s address space is
different. Please contact the camera manufacturer for an address map of your camera.

BF_OK Function was successful.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_COM_TIMEOUT Timeout waiting for acknowledgement.

BF_BRD_CXP_COM_BAD_ACK Receive FIFO empty

BF_BRD_CXP_COM_BAD_ACK Wrong number of bytes received

CoaXPress specific functions BFCXPWriteReg

Version G.8 BitFlow, Inc. SDK-48-3

48.3 BFCXPWriteReg

Prototype BFCAPI BFCXPWriteReg(Bd Board, BFU32 Link, BFU32 Address, BFU32 Value)

Description Write a register to a CoaXPress device.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value to 0xff.

Address

Address to write to.

Value

A 32-bit integer value which will be written to register at address Address.

Returns

Comments This function is used to write a single 32-bit register to the CXP device attached to link
number link on the VFG whose handle is Board. If the link number is not known, just
set link equal to 0xff. The function will write the 32-bit value in the parameter Value
unless there is a problem, then it will return an error.

With the exception of the CXP boot strap registers, each camera’s address space is
different. Please contact the camera manufacturer for an address map of your camera.

BF_OK Function was successful.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_COM_TIMEOUT Timeout waiting for acknowledgement.

BF_BRD_CXP_COM_BAD_ACK Error code in camera acknowledgement.

BFCXPReadData BitFlow SDK

SDK-48-4 BitFlow, Inc. Version G.8

48.4 BFCXPReadData

Prototype BFCAPI BFCXPReadData(Bd Board, BFU32 Link, BFU32 Address, BFU32 ReadSiz-
eRequested, PBFU32 pReadSizeActual, PBFVOID pBuffer, BFSIZET BufferSize)

Description Read a block of memory from a CoaXPress device.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value to 0xff.

Address

Start address of block of memory to read from.

ReadSizeRequested

Number of bytes to read.

pReadSizeActual

Number of bytes actually read.

pBuffer

Pointer to a buffer which will hold the block of memory when this function returns.

BufferSize

Allocated size of pBuffer (in bytes).

Returns

BF_OK Function was successful.

BF_NULL_POINTER pBuffer is NULL.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_LINK_ERROR Can not determine the device’s block size.

BF_BRD_CXP_COM_TIMEOUT Timeout waiting for acknowledgement.

BF_BRD_CXP_COM_BAD_ACK Error code in camera acknowledgement.

BF_CXP_COM_READ_ERROR Wrong number of bytes received.

CoaXPress specific functions BFCXPReadData

Version G.8 BitFlow, Inc. SDK-48-5

Comments This function is used to read a contiguous block of memory from the device into a
host buffer. The block is defined by a starting address and block size. The size of the
block must be smaller or equal to the size of the host buffer used to receive the data.

With the exception of the CXP boot strap registers, each camera’s address space is
different. Please contact the camera manufacturer for an address map of your camera.

BFCXPWriteData BitFlow SDK

SDK-48-6 BitFlow, Inc. Version G.8

48.5 BFCXPWriteData

Prototype BFCAPI BFCXPWriteData(Bd Board, BFU32 Link, BFU32 Address, PBFVOID pBuf-
fer, BFU32 NumBytesToWrite)

Description Write a block of memory to a CoaXPress device.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value to 0xff.

Address

Start address of block of memory to write to.

pBuffer

Pointer to a buffer containing the data to write to the device.

NumBytesToWrite

Number of bytes to write to the device.

Returns

Comments This function is used to write to a contiguous block of memory in the device from a
host buffer. The block is defined by a starting address and block size. The size to write
must be smaller or equal to the size of the host buffer.

With the exception of the CXP boot strap registers, each camera’s address space is
different. Please contact the camera manufacturer for an address map of your camera.

BF_OK Function was successful.

BF_NULL_POINTER pBuffer is NULL.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_LINK_ERROR Can not determine the device’s block size.

BF_BRD_CXP_COM_TIMEOUT Timeout waiting for acknowledgement.

BF_BRD_CXP_COM_BAD_ACK Error code in camera acknowledgement.

BF_CXP_COM_WRITE_ERROR The write packet is not the correct size or the
response packet is not the correct size..

CoaXPress specific functions BFCXPConfigureLinkSpeed

Version G.8 BitFlow, Inc. SDK-48-7

48.6 BFCXPConfigureLinkSpeed

Prototype BFCAPI BFCXPConfigureLinkSpeed(Bd Board, BFU32 Link, BFU32 NumCamLinks,
BFU32 LinkSpeed, BFBOOL ProgCam)

Description Write a block of memory to a CoaXPress device.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value to 0xff.

NumCamLinks

The number of links (on the current camera) that need to be programmed.

LinkSpeed

The new link speed to program the links to.

CXPSpeed125 - 1.25 Gb/S
CXPSpeed250 - 2.50 Gb/S
CXPSpeed3125 - 3.125 Gb/S
CXPSpeed500 - 5.00 Gb/S
CXPSpeed625 - 6.25 Gb/S

ProgCam

Must be set to TRUE.

Returns

Comments This function programs the camera to the given speed. The board will automatically
adjust to the camera’s speed. The NumCamLinks parameter should be set to the
number of links that are currently connecting the camera to the frame grabber.

BF_OK Function was successful.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_LINK_ERROR Can not determine the device’s block size.

BFCXPFindMasterLink BitFlow SDK

SDK-48-8 BitFlow, Inc. Version G.8

48.7 BFCXPFindMasterLink

Prototype BFCAPI BFCXPFindMasterLink(Bd Board, PBFU32 pLink)

Description Find which frame grabber link is connected to the master link on the CoaXPress cam-
era.

Parameters Board

Handle to board.

Link

Returns the link number of frame grabber link that is connected to the camera’s mas-
ter link.

Returns

Comments This function search all of the board’s connected CXP links looking for the link whose
DeviceConnectionID register is 0. This link is the camera’s master link which is used
for sending commands to the camera.

BF_OK Function was successful.

BF_BRD_NOT_CXP Board is not a handle to a CXP board.

BF_BRD_CXP_LINK_ERROR Can not determine the device’s block size.

CoaXPress specific functions BFCXPIsPowerUp

Version G.8 BitFlow, Inc. SDK-48-9

48.8 BFCXPIsPowerUp

Prototype BFCAPI BFCXPIsPowerUp(Bd Board, BFU32 Link)

Description Determine is a CXP link is powered up or not.

Parameters Board

Handle to board.

Link

Link number (0 based). In general any VFG can read/write from/to any CXP link. How-
ever, it usually only makes sense to communicate with the camera the VFG is acquir-
ing from. If you are not sure, set this value of 0xff.

Returns

Comments This function can be used to determine if a link is powered up or not. The hardware
automatically powers up links if the cameras indicates that it needs power. This func-
tion can be used to determine if the camera is powered up or not, also which links of
a multiple link camera are using power and which are not.

TRUE The link is powered up

FALSE The link is not powered

BFCXPIsPowerUp BitFlow SDK

SDK-48-10 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-49-1

BitFlow Error Handling

Chapter 49

49.1 Introduction

All of the BitFlow SDK functions will return error codes if the function does not execute
correctly. High-level functions call mid-level functions which in turn call low-level func-
tions, which in turn call kernel functions. Because this chain can be so long and some of
the errors may happen in a low-level call, the return code of the top level function may not
be very useful in debugging the root cause of the problem.

For these reasons, the BitFlow SDK uses an error stack. As errors occur, they are put on
the stack. The stack can be walked and the errors can be examined, one by one, to deter-
mine the root cause of the malfunction.

Errors can be sent to a number of destinations; each destination is independent of all
other destinations. The possible destinations are the event viewer, a pop-up dialog, a
debugger (if there is one running), and a file. Also, an error can cause the application to
abort at the user level. Each destination can be turned on or off independently. Each des-
tination can be programmed to selectively filter out one or more particular errors.

BFErrorXXXXXX BitFlow SDK

SDK-49-2 BitFlow, Inc. Version G.8

49.2 BFErrorXXXXXX

Prototype BFRC BFErrorEnableEvent(Bd Board, BFU32 Filter) - enables event viewer errors

BFRC BFErrorDisableEvent(Bd Board, BFU32 Filter) - disable event viewer errors

BFRC BFErrorEnableDebugger(Bd Board, BFU32 Filter) - enables debugger errors

BFRC BFErrorDisableDebugger(Bd Board, BFU32 Filter) - disables debugger errors

BFRC BFErrorEnableDialog(Bd Board, BFU32 Filter) - enables dialog errors

BFRC BFErrorDisableDialog(Bd Board, BFU32 Filter) - disables dialog errors

BFRC BFErrorEnableFile(Bd Board, BFU32 Filter) - enables log file errors

BFRC BFErrorDisableFile(Bd Board, BFU32 Filter) - disables log file errors

BFRC BFErrorEnableMonitor(Bd Board, BFU32 Filter) - enables debug monitor
errors

BFRC BFErrorDisableMonitor(Bd Board, BFU32 Filter) - disables debug monitor
errors

BFRC BFErrorEnableBreakUser(Bd Board, BFU32 Filter) - enables user level break
after error

BFRC BFErrorDisableBreakUser(Bd Board, BFU32 Filter) - disables user level break
after error

BFRC BFErrorEnableAll(Bd Board, BFU32 Filter) - enables errors for all error devices

BFRC BFErrorDisableAll(Bd Board, BFU32 Filter) - disable errors for all error devices

Description These functions controls which error messages are active for each error destination.

Parameters Board

Board to set error destination(s) on.

Filter

Error(s) to enable or disable.

Returns

Comments Each of the functions are independent. Each error destination can have its own list of

RV_OK If successful.

Non-zero On error.

BitFlow Error Handling BFErrorXXXXXX

Version G.8 BitFlow, Inc. SDK-49-3

enable and disable errors independent of all other destinations. If an error destina-
tion gets conflicting instructions (e.g., calling BFErrorEnable(board,ErrorBug) fol-
lowed by BFErrorDisable(board,ErrorAll)), the last error function that is called takes
precedence.

Filter can be one of the following options:

A single error number (see header files "BFTabError.h", “R2TabError.h” and "R64-
TabError.h").

One or more error types ORed together. The error types are:

ErrorBug - outright bug in the code that must be fixed.
ErrorFatal - deep, deep trouble. Program execution cannot continue.
ErrorWarn - something is wrong but recovery is possible.
ErrorInfo - informational messages.

The error type that represents none of the errors.

ErrorNone

The error type that represents all errors.

ErrorAll

BFErrorShow BitFlow SDK

SDK-49-4 BitFlow, Inc. Version G.8

49.3 BFErrorShow

Prototype BFRC BFErrorShow(Bd BoardId)

Description Displays errors on the error stack

Parameters Board

Board ID.

Returns

Comments This function pops errors off the error stack. For each error on the stack, a dialog will
pop up displaying the error information. The user can click the Next button to walk
through all of the errors on the stack. The user also has the option of aborting the
application, or ignoring the rest of the error on the error stack. Regardless of what
button the user clicks (other than abort), the error stack is cleared before this function
returns.

Note: If a particular error has been disabled through a call to BFErrorDisableDialog,
then it will not show up when calling this function.

BF_OK If no errors on stack.

Error number Top error on error stack.

BitFlow Error Handling BFErrorCheck

Version G.8 BitFlow, Inc. SDK-49-5

49.4 BFErrorCheck

Prototype BFRC BFErrorCheck(Bd BoardId)

Description Returns the top error on the error stack.

Parameters Board

Board ID.

Returns

Comments This function returns the top error on the error stack. This function does not pop
errors off the error stack. Use BFErrorClearLast to pop errors off the stack.

BF_OK If no errors on stack.

Error number Top error on error stack.

BFErrorClearAll BitFlow SDK

SDK-49-6 BitFlow, Inc. Version G.8

49.5 BFErrorClearAll

Prototype BFRC BFErrorClearAll(Bd BoardId)

Description Clears the error stack.

Parameters Board

Board ID.

Returns

Comments This function clears all error from the error stack.

BF_OK Function succeeded.

Non-zero Function failed.

BitFlow Error Handling BFErrorGetLast

Version G.8 BitFlow, Inc. SDK-49-7

49.6 BFErrorGetLast

Prototype BFRC BFErrorGetLast (Bd BoardId, PBFU32 pLastError)

Description Returns the top error on the error stack.

Parameters Board

Board ID.

pLastError

Points to top error on error stack

Returns

Comments This function returns the top error on the error stack. This function does not pop
errors off the error stack. Use BFErrorClearLast() to pop errors off the stack.

BF_OK If no errors on stack.

Non-zero Error getting top error.

BFErrorClearLast BitFlow SDK

SDK-49-8 BitFlow, Inc. Version G.8

49.7 BFErrorClearLast

Prototype BFRC BFErrorClearLast (Bd BoardId)

Description Removes the top error on the error stack.

Parameters Board

Board ID.

Returns

Comments This function removes the top error on the error stack.

BF_OK If no errors on stack.

Non-zero Error getting top error.

BitFlow Error Handling BFErrorDefaults

Version G.8 BitFlow, Inc. SDK-49-9

49.8 BFErrorDefaults

Prototype BFRC BFErrorDefaults (Bd BoardId)

Description Puts all error destinations in their default mode.

Parameters Board

Board ID.

Returns

Comments Enable or Disable all error destinations so that they are set their default mode.

BF_OK If no errors on stack.

Non-zero Error getting top error.

BFErrorGetMes BitFlow SDK

SDK-49-10 BitFlow, Inc. Version G.8

49.9 BFErrorGetMes

Prototype BFRC BFErrorGetMes(Bd Board, BFRC ErrorRC, PBFCHAR Message, BFU32 Mes-
sageBufSize);

Description Retrieves a string containing the error text for the given error.

Parameters Board

Board ID.

ErrorRC

The error number to retrieve the error text of.

Message

A pointer to a character array which will contain the error string when returned.

MessageBufSize

The size of the buffer pointed to by Message.

Returns

Comments This function can be used to retrieve text of error messages as a string. This text will
be the same as is displayed in the error dialogs.

BF_OK If no errors on stack.

Non-zero Error getting error text.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-50-1

BitFlow Register Access

Chapter 50

50.1 Introduction

These functions allow an application to read and write directly to every bit on the any of
the BitFlow boards. For a full description of the individual bit names and their functions,
refer to the corresponding Hardware Reference Manual.

The most important functions in this section are BFRegPoke and BFRegPeek. The other
functions are for more esoteric uses that treat registers as generic objects. Generally,
these other functions are not useful in customer applications.

BFRegPeek BitFlow SDK

SDK-50-2 BitFlow, Inc. Version G.8

50.2 BFRegPeek

Prototype BFRC BFRegPeek(Bd(Bd Board, BFU32 RegId)

Description Reads a bit field out of a full 32-bit register.

Parameters Board

Board ID.

RegId

Register ID.

Returns The bit field value.

Comments Register IDs for partial registers (bit fields) and for full registers (32-bits) are intermin-
gled into the same table. Function BFRegFlags may be used to distinguish the two
register types (BFF_NSET for bit field registers, BFF_WSET for full registers).

Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

BitFlow Register Access BFRegPeekWait

Version G.8 BitFlow, Inc. SDK-50-3

50.3 BFRegPeekWait

Prototype BFRC BFRegPeekWait(Bd Board, BFU32 RegId, BFU32 WaitValue, BFU32 WaitMilli-
seconds)

Description Waits for a register value to match a desired value or return after a time-out.

Parameters Board

Board ID.

RegId

Register ID.

WaitValue

Register value to wait on.

WaitMilliseconds

Wait time-out in milliseconds.

Returns The desired register value or the register contents at time-out.

Comments The register value is immediately tested against the WaitValue and will return if the
values match.

BFRegPeekWait spins on the register contents during the current threads entire time
slice. Processor time is not shared back to other threads.

The minimum wait time will always be at least as long as the specified wait regardless
of clock granularity.

The actual maximum wait time is shown in Table 50-1.

Where:

 T = WaitMilliseconds
 G = The clock granularity in milliseconds

Table 50-1 Maximum Wait Time

Algorithm Method

T + 2G - T% - 1 when T%G != 0

T + G – 1 when T%G == 0

BFRegPoke BitFlow SDK

SDK-50-4 BitFlow, Inc. Version G.8

50.4 BFRegPoke

Prototype BFRC BFRegPoke(Bd Board, BFU32 RegId, BFU32 RegValue)

Description Writes a value to a register.

Parameters Board

Board ID.

RegId

Register ID.

RegValue

Value to write into the register.

Returns

Comments Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

Full (32-bit) registers are written directly. A read-modify-write is used to set bit field
registers within a full register.

BF_OK If successful.

BF_BAD_BIT_ID Illegal register ID.

BitFlow Register Access BFRegRMW

Version G.8 BitFlow, Inc. SDK-50-5

50.5 BFRegRMW

Prototype BFRC BFRegRMW(Bd Board, BFU32 RegId, BFU32 RegValue, BFU32 RegMask)

Description Read-modify-write to a masked area within a register.

Parameters Board

Board ID.

RegId

Register ID.

RegValue

Value to write into the register.

RegMask

Mask bits defining register bits to be modified.

Returns

Comments Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

The RegValue is masked with RegMask and the result is masked into the target reg-
ister. Normally, you can use the function BFRegPoke as it automatically does a read-
modify-write operation for predefined bit fields.

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BFRegName BitFlow SDK

SDK-50-6 BitFlow, Inc. Version G.8

50.6 BFRegName

Prototype BFRC BFRegName(Bd Board, BFU32 RegId, LPSTR pRegName, BFU32 Size)

Description Gets a register’s name.

Parameters Board

Board ID.

RegId

Register ID.

pRegName

Pointer to register name storage.

Size

Register name array size.

Returns

Comments Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

There are RegCount register IDs from ID 0 to ID RegCount - 1.

The register name will be truncated to fit the provided name buffer.

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BitFlow Register Access BFRegFlags

Version G.8 BitFlow, Inc. SDK-50-7

50.7 BFRegFlags

Prototype BFRC BFRegFlags(Bd Board, BFU32 RegId, PBFU32 FlagsPtr)

Description Gets a register’s type flags.

Parameters Board

Board ID.

RegId

Register ID.

FlagsPtr

Pointer to register flag storage.

Returns

Comments Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

There are RegCount register IDs from ID 0 to ID RegCount - 1.

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BFRegShift BitFlow SDK

SDK-50-8 BitFlow, Inc. Version G.8

50.8 BFRegShift

Prototype BFRC BFRegShift(Bd Board, BFU32 RegId, PBFU32 ShiftPtr)

Description Gets a register’s bit field shift count.

Parameters Board

Board ID.

RegId

Register ID.

ShiftPtr

Pointer to shift count storage.

Returns

Comments The register shift field count is the number of bit positions a register value must be
shifted to the left to fall within the register's bit field.

Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

Example

The following code uses BFRegObjectId, BFRegShift and BFRegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling BFRegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
BFRegObjectId(Board, REG_MUXC, &Parent)
BFRegShift(Board, REG_MUXC, &Shift)
BFRegMask(Board, REG_MUXC, &Mask)
ParentValue = BFRegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BitFlow Register Access BFRegMask

Version G.8 BitFlow, Inc. SDK-50-9

50.9 BFRegMask

Prototype BFRC BFRegMask(Bd Board, BFU32 RegId, PBFU32 MaskPtr)

Description Gets a register’s bit field mask.

Parameters Board

Board ID.

RegId

Register ID.

MaskPtr

Pointer to storage for the register’s bit field mask.

Returns

Comments A bit field mask is used to access bit field data stored in a full 32-bit register.

Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

Example

The following code uses BFRegObjectId, BFRegShift and BFRegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling BFRegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
BFRegObjectId(Board, REG_MUXC, &Parent)
BFRegShift(Board, REG_MUXC, &Shift)
BFRegMask(Board, REG_MUXC, &Mask)
ParentValue = BFRegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BFRegObjectId BitFlow SDK

SDK-50-10 BitFlow, Inc. Version G.8

50.10 BFRegObjectId

Prototype BFRC BFRegObjectId(Bd Board, BFU32 Regld, PBFU32 ObjectIdPtr)

Description Gets a register’s wide register object ID.

Parameters Board

Board ID.

RegId

Register ID.

ObjectIDPtr

Pointer to wide register object ID storage.

Returns

Comments A bit field register's parent ID is used with a register's bit field mask and bit field count
to directly access bit fields within a full 32-bit register.

Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

Example

The following code uses BFRegObjectId, BFRegShift and BFRegMask to extract bit
field REG_MUXC out of the 32-bit register, REG_CON0. The same result may be
obtained by calling BFRegPeek(Board, REG_MUXC).

BFU32 ParentValue, ChildValue, Parent, Shift, Mask
BFRegObjectId(Board, REG_MUXC, &Parent)
BFRegShift(Board, REG_MUXC, &Shift)
BFRegMask(Board, REG_MUXC, &Mask)
ParentValue = BFRegPeek(Board, Parent)
ChildValue = (ParentValue & Mask) >> Shift

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BitFlow Register Access BFRegSupported

Version G.8 BitFlow, Inc. SDK-50-11

50.11 BFRegSupported

Prototype BFBOOL BFRegSupported(Bd Board, BFU32 RegId)

Description Returns whether a register is support on the board or not.

Parameters Board

Board ID.

RegId

Register ID.

Returns

Comments This function can be called to determine if a register is on a board. A register identi-
fied by RegId may be on more than one type of board, or just on one board. This
function will help identify if the register is on the board.

Register IDs are declared in “BFTabRegister.h”. See the corresponding Hardware Ref-
erence Manual for a description of each bit.

TRUE Register is on board.

FALSE Register is not on board.

BFRegAddr BitFlow SDK

SDK-50-12 BitFlow, Inc. Version G.8

50.12 BFRegAddr

Prototype BFBOOL BFRegAddr(Bd Board, BFU32 RegId, PBU32 AddrPtr)

Description Returns wide register ID of the given bitfield

Parameters Board

Board ID.

RegId

Register ID.

AddrPtr

Wide register ID that contains the bitfield RegID.

Returns

Comments This function can be used to find the wide (i.e. 32-bit) register ID that a give bitfiled
belongs to.

BF_OK Function successful.

BF_BAD_BIT_ID Illegal register ID.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-51-1

BitFlow Version Control Functions

Chapter 51

51.1 Introduction

These functions are provided so that applications can cross check the version of the DLLs
that is on the runtime machine with the version of the SDK they were built with. The vari-
ables BF_SDK_VERSION_MAJOR and BF_SDK_VERSION_MINOR are defined in the
header files and should match the values returned from these function at runtime. If there
is a miss match then this usually means the DLLs on the runtime machine are not compat-
ible with the application.

BFDriverVersion, R2DVersion, BFDVersion, BFErVersion, DispSurfVersion, DDrawSurfVersion, BitDirectSurfVersion, CiDVersion, R64DVersion
BitFlow SDK

SDK-51-2 BitFlow, Inc. Version G.8

51.2 BFDriverVersion, R2DVersion, BFDVersion, BFErVersion,
DispSurfVersion, DDrawSurfVersion, BitDirectSurfVersion, CiDVersion,
R64DVersion

Prototype BFRC BFDVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC R2DVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC CiDVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC BFDriverVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC BFErVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC DispSurfVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC DDrawSurfVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC BitDirectSurfVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)
BFRC R64DVersion(PBFU32 pMajorVersion, PBFU32 pMinorVersion)

Description Returns the current version of their corresponding DLL.

Parameters pMajorVersion

Pointer to a BFU32. When the function returns, it contains the major version number.
If the highest order bit is set, the DLL is a debug version.

pMinorVersion

Pointer to a BFU32. When the function returns, it contains the minor version number.

Returns

Comments These functions return the version of their corresponding DLLs. These function can be
used to make sure application are working with the correct DLLs. The variables BF_
SDK_VERSION_MAJOR and BF_SDK_VERSION_MINOR are always defined in the
header files of the SDK. These variables can be used in an application to determine
what version of the SDK the application was built with. These variables can also be
compared to the values returned from the above functions to maintain version consis-
tency between the application and the current DLLs.

The highest order bit (bit 31) will be set in the pMajorVersion parameter upon return
if the current DLL is a debug version.

BF_OK In all cases.

BitFlow Version Control Functions BFBuildNumber

Version G.8 BitFlow, Inc. SDK-51-3

51.3 BFBuildNumber

Prototype BFRC BFBuildNumber(Bd Board, PBFU32 pBuildNumber)

Description Returns the build number of the current installation of the SDK and BitFlow Driver.

Parameters Board

Board ID.

pBuildNumber

Returns the current build number.

Returns

Comments Even though each SDK release has a unique version number, during the release pro-
cess the final release is built a number of times before the final release candidate is
released. Each time the release is build the build number is incremented. It is some-
time helpful to know exactly which build is currently installed, though this information
is most useful during Beta and release candidate testing.

BF_OK In all cases.

BFReadHWRevision BitFlow SDK

SDK-51-4 BitFlow, Inc. Version G.8

51.4 BFReadHWRevision

Prototype BFRC BFReadHWRevision(Bd Board, PBFCHAR HWRevision, BFU32 HWRevsion-
Size)

Description Returns the boards hardware revision information.

Parameters Board

Board ID.

HWRevsion

Returns a string containing the board’s hardware revision information.

HWRevisionSize

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter HWRevsion.

Returns

Comments This function can be used to determine the hardware revision of certain models of Bit-
Flow frame grabbers. Not all models have hardware revision information.

BF_OK In all cases.

BitFlow Version Control Functions BFReadFWRevision

Version G.8 BitFlow, Inc. SDK-51-5

51.5 BFReadFWRevision

Prototype BFRC BFReadFWRevision(Bd Board, PBFCHAR HWRevision, BFU32 HWRevsion-
Size)

Description Returns the boards firmware revision information on boards that do not download
firmware on power up.

Parameters Board

Board ID.

HWRevsion

Returns a string containing the board’s hardware revision information.

HWRevisionSize

This parameter should contain the size of the buffer (in bytes) pointed to by the
parameter HWRevsion.

Returns

Comments This function can be used to determine the hardware revision of certain models of Bit-
Flow frame grabbers, primarily the Karbon-CXP family. Not all models have firmware
revision information.

BF_OK In all cases.

BFReadFWRevision BitFlow SDK

SDK-51-6 BitFlow, Inc. Version G.8

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-52-1

BitFlow Miscellaneous Functions

Chapter 52

52.1 Introduction

This chapter contains functions that do not fit into any of the previous categories.

BFQTabModeRequest BitFlow SDK

SDK-52-2 BitFlow, Inc. Version G.8

52.2 BFQTabModeRequest

Prototype BFRC BFQTabModeRequest(Bd BoardId, BFU32 ModeRequested, PBFU32
ModeImplemented)

Description Put the board in to a particular DMA mode: host QTABs or board QTABs

Parameters Board

Board ID.

ModeRequested

The desired DMA mode. Must be one of:

BFQTabModeHost - host QTABs mode is requested
BFQTabModeBoard - board QTABs mode is request

ModeImplemented

Returned variable containing the mode that was actually implemented. This will be
one of:

BFQTabModeHost - host QTABs were implemented
BFQTabModeBoard - board QTABs were implemented

Returns

Comments Traditional DMA operations are by performed programming a DMA engine with a set
of instructions telling the engine to where to write the data and how much data to
write. Once instruction is executed, the DMA engine must be reprogrammed from the
host CPU for the next block of data to be written. This process becomes a burden in
any modern operating system that uses virtual memory. These systems break physical
memory in to small pages (typically 4K bytes), requiring a separate DMA operation for
each page. Even small image buffers require frequent reprogramming by the CPU.
This reprogramming takes CPU cycles away from other tasks such as image process-
ing. Scatter Gather DMA solves this problem by building a list of DMA instructions for
the entire image buffer before during setup time. Once the DMA operation has
begun, the DMA engine fetches and performs each DMA instruction in turn. This
technique requires no CPU activity to DMA to even the largest image buffer or
sequence of buffers. The scatter gather DMA instruction can be stored on the board
in SRAM, which can limit the total size of the destination buffer, or in host memory,
where the size of the destination buffer (or buffers) is limited only by the amount of
memory in the PC.

BF_OK If no errors on stack.

Error number Top error on error stack.

BitFlow Miscellaneous Functions BFQTabModeRequest

Version G.8 BitFlow, Inc. SDK-52-3

This function is used to select where the scatter gather instructions should be stored,
either in host memory or on the board. Some BitFlow boards support both methods,
some boards support just one method or the other, and some boards support both
but require a firmware change. For this reason the returned value ModeImple-
mented should always be examined when this function returns to make sure the
desired mode was implemented.

All of the high level functions in the BitFlow SDK work identically regardless of the
mode the board is in. The only difference will be when extremely large images are
being acquired, in which case functions may fail in board QTab mode, or when build-
ing QTab chains, which only works in host QTab mode.

Both DMA methods are identical in terms of PCI bandwidth performance.

Note: Not this function is only for use with RoadRunner models.

BFChainSIPEnable BitFlow SDK

SDK-52-4 BitFlow, Inc. Version G.8

52.3 BFChainSIPEnable

Prototype BFRC BFChainSIPEnable(Bd BoardId)

Description Enables Start-Stop Interrupt Processing mode.

Parameters Board

Board ID.

Returns

Comments This function enables Start-Stop Interrupt Processing (SIP). This processing is used to
reset the DMA engine in a kernel interrupt service routine.

When the board is in start-stop mode, the DMA is terminated before the frame is
completely acquired. This termination leaves the DMA engine in an unknown state.
The DMA engine must be reset and setup for the next host buffer before the next
frame starts. Ordinarily this reset is performed by the application at the user level.
However, in the case of a multi threaded application, the reset thread may not be able
to reset the DMA engine before the beginning of the next frame (because of CPU
load and thread priorities). To solve this problem the BitFlow SDK implements a DMA
engine reset in the kernel level interrupt service routine. This code has higher priority
than any user level threads. The latency and execution time of the SIP reset is mini-
mized thus reducing the required minimum time between frames. This function turns
on this functionality.

SIP only works (and is only required) when the board is in start-stop triggering mode
(variable size image acquisition) and when a host QTab chain has been created and
engaged. This function must be called before acquisition has started but after the
QTab chain is created. This function enable the SIP resetting of the DMA engine, you
must call BFChainSIPDisable to turn the SIP off. This SIP is based on an interrupt which
occurs at the end of the variable length frame. On the Road Runner/R3 the CTAB col-
umn, IRQ, interrupt (put an entry at location zero) is used. On the R64 the EOF inter-
rupt is used.

The example application Flow demonstrates usage of this function.

BF_OK If no errors on stack.

Error number Top error on error stack.

BitFlow Miscellaneous Functions BFChainSIPDisable

Version G.8 BitFlow, Inc. SDK-52-5

52.4 BFChainSIPDisable

Prototype BFRC BFChainSIPDisable(Bd BoardId)

Description Disables Start-Stop Interrupt Processing mode.

Parameters Board

Board ID.

Returns

Comments See BFChainSIPEnable for details.

BF_OK Function succeeded.

Non-zero Function failed.

BFStructItemGet BitFlow SDK

SDK-52-6 BitFlow, Inc. Version G.8

52.5 BFStructItemGet

Prototype BFRC BFStructItemGet(Bd Board, PBFCNF pBase, BFU32 ID, BFU32 Indx, PBFVOID
pVal1, PBFVOID pVal2, PBFU32 pDisp, BFU32 DestSize, PBFU32 pASize)

Description Gets a configuration value from a configuration structure.

Parameters Board

Board ID.

pBase

Pointer to a configuration structure.

ID

Token identifying the configuration item. See R64Entry.h or R2Entry.h for a list of
tokens.

Indx

If the configuration item is a list, this is in number in the list to get.

pVal1

A pointer that will contain the value when the function returns.

pVal2

If the item has two values, this parameter will contain the second item when the func-
tion returns.

pDisp

If the item is a list, this will contain the disposition of the list search (by incrementing
Indx) when the function returns. This value will be one of:

BFCNF_ENDOFLIST - the list number Indx does not exist.
BFCNF_OK - the list number Indx is valid, and it’s values are return in pVal1

and pVal2.

DestSize

Total size of the memory (in bytes) pointed to by both pVal1 and pVal2. This is mainly
used when the item is a string of unknown length.

pASize

The total size of the memory (in bytes) return in both the variables pVal1 and pVal2.

BitFlow Miscellaneous Functions BFStructItemGet

Version G.8 BitFlow, Inc. SDK-52-7

Returns

Comments This function is used to extract a configuration value from a configuration structure in
memory. The configuration information is stored in a compact binary structure of vari-
able length. The information can on be extracted using this function. The parameter
ID is identifies the item to be extracted. There are many different types of configura-
tion items, this function supports extracting all of them. To get all the item in list, call
this function can be called in a loop, incrementing Indx each time, until pDisp returns
BFCNF_ENDOFLIST.

Typically this function is used to get a parameter out of a camera configuration file
that has been loaded into memory. In general the board and camera inquiry functions
are much easier to use, this function is only needed for parameters that are not avail-
able from the inquiry functions.

BF_OK If no errors on stack.

Non-zero Error getting top error.

BFStructItemSet BitFlow SDK

SDK-52-8 BitFlow, Inc. Version G.8

52.6 BFStructItemSet

Prototype BFRC BFStructItemSet(Bd Board, PBFCNF pBase, BFU32 ID, BFU32 Indx, PBFVOID
pVal1, PBFVOID pVal2, BFU32 SourceSize)

Description Inserts a configuration value into a configuration structure.

Parameters Board

Board ID.

pBase

Pointer to a configuration structure.

ID

Token identifying the configuration item. See R64Entry.h or R2Entry.h for a list of
tokens.

Indx

If the configuration item is a list, this is in number in the list to insert.

pVal1

A pointer to the value to insert.

pVal2

If the item has two values, this parameter is a pointer to the second value to insert.

SourceSize

Total size of the memory (in bytes) pointed to by both pVal1 and pVal2.

Returns

Comments This function is used to insert a value into a configuration structure. This function is the
only way to update a configuration structure. Inserting values in a configuration struc-
ture only makes sense if the structure is then used by some other high level function
for setting up acquisition. Generally is it easier to make changes directly to the board.

BF_OK If no errors on stack.

Non-zero Error getting top error.

BitFlow Miscellaneous Functions BFTick

Version G.8 BitFlow, Inc. SDK-52-9

52.7 BFTick

Prototype BFTickPtr BFTick(BFTickPtr TickPtr)

Description Gets the current time in units of ticks.

Parameters TickPtr

Pointer to a tick structure. When the function returns, this contains the current tick
count.

Returns The current tick count.

Comments This function gets the current tick count. Generally this function is called twice, once
before an event and once after. The two tick counts are then passed to the function
BFTickDelta to calculate the elapsed time.

BFTickRate BitFlow SDK

SDK-52-10 BitFlow, Inc. Version G.8

52.8 BFTickRate

Prototype BFU32 BFTickRate(void)

Description Gets the current tick rate.

Parameters

Returns The current tick rate in ticks per second.

Comments This function returns the operating systems tick rate in units of ticks per second.

BitFlow Miscellaneous Functions BFTickDelta

Version G.8 BitFlow, Inc. SDK-52-11

52.9 BFTickDelta

Prototype BFU32 BFTickDelta(BFTickPtr t0, BFTickPtr t1)

Description Returns the amount of time that has elapse between to tick values.

Parameters t0

Pointer to a tick structure, containing the start time of an event.

t1

Pointer to a tick structure, containing the end time of an event.

Returns The time between the two events, in milliseconds.

Comments This function calculates the time between to events. General BFTIck is call twice, once
before an event and once after. The two tick counts are then passed to this function to
calculate the elapsed time.

BFFine BitFlow SDK

SDK-52-12 BitFlow, Inc. Version G.8

52.10 BFFine

Prototype BFU64 BFFine(Bd Board)

Description Returns the current fine grain tick value (CPU clock counter).

Parameters Board

Handle to board.

Returns The current fine grain tick count.

Comments This function gets the fine grain current tick count. Generally this function is called
twice, once before an event and once after. The two tick counts are then passed to the
function BFFineDelta to calculate the elapsed time.

The value return from this function can be converted to milliseconds by dividing the
value return from this function by the value returned from BFFineRate

BitFlow Miscellaneous Functions BFFineRate

Version G.8 BitFlow, Inc. SDK-52-13

52.11 BFFineRate

Prototype BFU64 BFTickRate(Bd Board)

Description Gets the current fine grain tick rate.

Parameters Board

Handle to board.

Returns The current fine grain tick rate in ticks per second.

Comments This function returns the CPU clock tick rate in units of ticks per second. The value
returned from this function should only be used the other BFFineXXX functions.

BFFineDelta BitFlow SDK

SDK-52-14 BitFlow, Inc. Version G.8

52.12 BFFineDelta

Prototype BFU64 BFFineDelta(Bd Board, BFU64 t0, BFU64 t1, BFBOOL AbsValue)

Description Returns the amount of time that has elapse between to fine grain tick values.

Parameters Board

Handle to board.

t0

A fine grain tick count, containing the start time of an event.

t1

A fine grain tick count, containing the end time of an event.

AbsValue

Set to TRUE to have the function return the absolute value of the difference between
t0 and t1..

Returns The time between the two events, microseconds.

Comments This function calculates the time between to events. General BFFine is called twice,
once before an event and once after. The two tick counts are then passed to this func-
tion to calculate the elapsed time.

BitFlow Miscellaneous Functions BFFineWait

Version G.8 BitFlow, Inc. SDK-52-15

52.13 BFFineWait

Prototype void BFTickRate(Bd Board, BFU32 Microseconds)

Description Wait the given number of microseconds.

Parameters Board

Handle to board.

Microseconds

Number of microseconds to wait.

Comments This function delays execution the given number of microseconds. The function does
consume CPU cycles.

BFDrvReady BitFlow SDK

SDK-52-16 BitFlow, Inc. Version G.8

52.14 BFDrvReady

Prototype BFRC BFDrvReady(BFU32 TimeoutSeconds)

Description Waits for the driver to start.

Parameters TimeoutSeconds

Number of seconds to wait for the driver to start before returning.

Returns

Comments This function waits for the kernel level driver to start. This function is useful if an appli-
cation is automatically run when a system is booted. The start order of drivers is not
predictable, and the BitFlow driver may not yet be started by the time and application
is started. This function can be called to make sure the driver is started before making
any calls to the BF SDK.

BF_OK Driver is running.

BFSYS_ERROR_
NOTREADY

Time-out has elapsed and the driver is not ready.

BitFlow Miscellaneous Functions BFIsCL

Version G.8 BitFlow, Inc. SDK-52-17

52.15 BFIsCL

Prototype BFBOOL BFIsCL(Bd Board)

Description Returns type of board

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a camera link board or not.
This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a camera link board.

FALSE The board is not a camera link board.

BFIsR3 BitFlow SDK

SDK-52-18 BitFlow, Inc. Version G.8

52.16 BFIsR3

Prototype BFBOOL BFIsR3(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a R3 or a Road Runner. This
function is usually on required in special situations requiring low level access to the
board.

TRUE The board is an R3 board.

FALSE The board is not an R3 board.

BitFlow Miscellaneous Functions BFIsR2

Version G.8 BitFlow, Inc. SDK-52-19

52.17 BFIsR2

Prototype BFBOOL BFIsR2(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a Road Runner. This function is
usually required in special situations requiring low level access to the board.

TRUE The board is an R2 board.

FALSE The board is not an R2 board.

BFIsRv BitFlow SDK

SDK-52-20 BitFlow, Inc. Version G.8

52.18 BFIsRv

Prototype BFBOOL BFIsRv(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a Raven. This function is usu-
ally on required in special situations requiring low level access to the board.

TRUE The board is a Raven board.

FALSE The board is not a Raven board.

BitFlow Miscellaneous Functions BFIsR64Board

Version G.8 BitFlow, Inc. SDK-52-21

52.19 BFIsR64Board

Prototype BFBOOL BFIsR64Board(Bd Board)

Description Returns exact board type

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a R64 or R64e. This function is
usually on required in special situations requiring low level access to the board.

TRUE The board is an R64/R64e board.

FALSE The board is not an R64/R64e board.

BFIsR64 BitFlow SDK

SDK-52-22 BitFlow, Inc. Version G.8

52.20 BFIsR64

Prototype BFBOOL BFIsR64(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the current board has the R64 architecture.
Current this means that this function will return true if the board is an R64, R64e, Kar-
bon, Neon or Alta. It will return false for a Road Runner, R3 or Raven.

TRUE The board has the R64 architecture.

FALSE The board does not have the R64 architecture.

BitFlow Miscellaneous Functions BFIsPMC

Version G.8 BitFlow, Inc. SDK-52-23

52.21 BFIsPMC

Prototype BFBOOL BFIsPMC(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function can be called to determine if the board is a PMC. This function is usually
on required in special situations requiring low level access to the board.

TRUE The board is a PMC board.

FALSE The board is not a PMC board.

BFIsPLDA BitFlow SDK

SDK-52-24 BitFlow, Inc. Version G.8

52.22 BFIsPLDA

Prototype BFBOOL BFIsPLDA(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board uses the PLDA engine.

FALSE The board does not use the PLDA engine/

BitFlow Miscellaneous Functions BFIsKbn

Version G.8 BitFlow, Inc. SDK-52-25

52.23 BFIsKbn

Prototype BFBOOL BFIsKbn(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Karbon board.

FALSE The board is not an Karbon board.

BFIsKbn4 BitFlow SDK

SDK-52-26 BitFlow, Inc. Version G.8

52.24 BFIsKbn4

Prototype BFBOOL BFIsKbn4(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Karbon 4 board.

FALSE The board is not an Karbon 4 board.

BitFlow Miscellaneous Functions BFIsKbn2

Version G.8 BitFlow, Inc. SDK-52-27

52.25 BFIsKbn2

Prototype BFBOOL BFIsKbn2(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Karbon 2 board.

FALSE The board is not an Karbon 2 board.

BFIsKbnBase BitFlow SDK

SDK-52-28 BitFlow, Inc. Version G.8

52.26 BFIsKbnBase

Prototype BFBOOL BFIsKbnBase(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an base Karbon board.

FALSE The board is not an base Karbon board.

BitFlow Miscellaneous Functions BFIsKbnFull

Version G.8 BitFlow, Inc. SDK-52-29

52.27 BFIsKbnFull

Prototype BFBOOL BFIsKbnFull(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a full Karbon board.

FALSE The board is not a full Karbon board.

BFIsKbnCXP BitFlow SDK

SDK-52-30 BitFlow, Inc. Version G.8

52.28 BFIsKbnCXP

Prototype BFBOOL BFIsKbnCXP(Bd Board)

Description Returns true if the board is a Karbon-CXP family board

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a Karbon-CXP board.

FALSE The board is not a Karbon-CXP board.

BitFlow Miscellaneous Functions BFIsKbnCXP1

Version G.8 BitFlow, Inc. SDK-52-31

52.29 BFIsKbnCXP1

Prototype BFBOOL BFIsKbnCXP1(Bd Board)

Description Returns true if the board is a Karbon-CXP1 board

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a Karbon-CXP1 board.

FALSE The board is not a Karbon-CXP1 board.

BFIsKbnCXP2 BitFlow SDK

SDK-52-32 BitFlow, Inc. Version G.8

52.30 BFIsKbnCXP2

Prototype BFBOOL BFIsKbnCXP2(Bd Board)

Description Returns true if the board is a Karbon-CXP2 board

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a Karbon-CXP2 board.

FALSE The board is not a Karbon-CXP2 board.

BitFlow Miscellaneous Functions BFIsKbnCXP4

Version G.8 BitFlow, Inc. SDK-52-33

52.31 BFIsKbnCXP4

Prototype BFBOOL BFIsKbnCXP4(Bd Board)

Description Returns true if the board is a Karbon-CXP4 board

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a Karbon-CXP4 board.

FALSE The board is not a Karbon-CXP4 board.

BFIsNeonBase BitFlow SDK

SDK-52-34 BitFlow, Inc. Version G.8

52.32 BFIsNeonBase

Prototype BFBOOL BFIsNeonBase(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is a base Neon board.

FALSE The board is not an base Neon board.

BitFlow Miscellaneous Functions BFIsNeonD

Version G.8 BitFlow, Inc. SDK-52-35

52.33 BFIsNeonD

Prototype BFBOOL BFIsNeonD(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Neon-CLD.

FALSE The board is not a Neon-CLD.

BFIsNeonQ BitFlow SDK

SDK-52-36 BitFlow, Inc. Version G.8

52.34 BFIsNeonQ

Prototype BFBOOL BFIsNeonQ(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Neon-CLQ.

FALSE The board is not a Neon-CLQ.

BitFlow Miscellaneous Functions BFIsNeonDif

Version G.8 BitFlow, Inc. SDK-52-37

52.35 BFIsNeonDif

Prototype BFBOOL BFIsNeonDif(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Neon-DIF.

FALSE The board is not a Neon-DIF.

BFIsAlta BitFlow SDK

SDK-52-38 BitFlow, Inc. Version G.8

52.36 BFIsAlta

Prototype BFBOOL BFIsAlta(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Alta board.

FALSE The board is not an Alta board.

BitFlow Miscellaneous Functions BFIsAlta1

Version G.8 BitFlow, Inc. SDK-52-39

52.37 BFIsAlta1

Prototype BFBOOL BFIsAlta1(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Alta 1 board.

FALSE The board is not an Alta 1 board.

BFIsAlta2 BitFlow SDK

SDK-52-40 BitFlow, Inc. Version G.8

52.38 BFIsAlta2

Prototype BFBOOL BFIsAlta2(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Alta 2 board.

FALSE The board is not an Alta 2 board.

BitFlow Miscellaneous Functions BFIsAlta4

Version G.8 BitFlow, Inc. SDK-52-41

52.39 BFIsAlta4

Prototype BFBOOL BFIsAlta4(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Alta 4 board.

FALSE The board is not an Alta 4 board.

BFIsSlave BitFlow SDK

SDK-52-42 BitFlow, Inc. Version G.8

52.40 BFIsSlave

Prototype BFBOOL BFIsSlave(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments Multi-VFG boards have one master VFG and one or more slave VFGs. Some opera-
tions can only be performed on the master VFG. This function is usually on required in
special situations requiring low level access to the board.

TRUE The board is a slave on a multi-VFG board.

FALSE The board is not a slave on a multi-VFG board.

BitFlow Miscellaneous Functions BFIsAxn

Version G.8 BitFlow, Inc. SDK-52-43

52.41 BFIsAxn

Prototype BFBOOL BFIsAxn(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Axion

FALSE The board is not an Axion

BFIsAxn1xE BitFlow SDK

SDK-52-44 BitFlow, Inc. Version G.8

52.42 BFIsAxn1xE

Prototype BFBOOL BFIsAxn1xE(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Axion-1xE

FALSE The board is not an Axion-1xE

BitFlow Miscellaneous Functions BFIsAxn2xE

Version G.8 BitFlow, Inc. SDK-52-45

52.43 BFIsAxn2xE

Prototype BFBOOL BFIsAxn2xE(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Axion-2xE

FALSE The board is not an Axion-2xE

BFIsAxn2xB BitFlow SDK

SDK-52-46 BitFlow, Inc. Version G.8

52.44 BFIsAxn2xB

Prototype BFBOOL BFIsAxn2xB(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Axion-2xB

FALSE The board is not an Axion-2xB

BitFlow Miscellaneous Functions BFIsAxn4xB

Version G.8 BitFlow, Inc. SDK-52-47

52.45 BFIsAxn4xB

Prototype BFBOOL BFIsAxn4xB(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments This function is usually on required in special situations requiring low level access to
the board.

TRUE The board is an Axion-4xB

FALSE The board is not an Axion-4xB

BFIsMaster BitFlow SDK

SDK-52-48 BitFlow, Inc. Version G.8

52.46 BFIsMaster

Prototype BFBOOL BFIsMaster(Bd Board)

Description Returns board family

Parameters Board

Board ID.

Returns

Comments Multi-VFG boards have one master VFG and one or more slave VFGs. Some opera-
tions can only be performed on the master VFG. This function is usually on required in
special situations requiring low level access to the board.

TRUE The board is a master on a multi-VFG board.

FALSE The board is not a master on a multi-VFG board.

BitFlow Miscellaneous Functions BFIsAltaAN

Version G.8 BitFlow, Inc. SDK-52-49

52.47 BFIsAltaAN

Prototype BFBOOL BFIsAltaAN(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Alta-AN.

FALSE The board is not a Alta-AN.

BFIsAltaCO BitFlow SDK

SDK-52-50 BitFlow, Inc. Version G.8

52.48 BFIsAltaCO

Prototype BFBOOL BFIsAltaCO(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Alta-CO.

FALSE The board is not a Alta-CO.

BitFlow Miscellaneous Functions BFIsAltaYPC

Version G.8 BitFlow, Inc. SDK-52-51

52.49 BFIsAltaYPC

Prototype BFBOOL BFIsAltaYPC(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Alta-YPC.

FALSE The board is not a Alta-YPC.

BFIsEncDiv BitFlow SDK

SDK-52-52 BitFlow, Inc. Version G.8

52.50 BFIsEncDiv

Prototype BFBOOL BFIsEncDiv(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board supports the encoder divider function.

FALSE The board does not support the encoder divider
function.

BitFlow Miscellaneous Functions BFIsNTG

Version G.8 BitFlow, Inc. SDK-52-53

52.51 BFIsNTG

Prototype BFBOOL BFIsNTG(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board supports the New Timing Generator
(NTG) function.

FALSE The board does not support the NTG.

BFIsGn2 BitFlow SDK

SDK-52-54 BitFlow, Inc. Version G.8

52.52 BFIsGn2

Prototype BFBOOL BFIsGn2Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is PCIe Gen2 architecture board.

FALSE This board is a previous architecture.

BitFlow Miscellaneous Functions BFIsCtn

Version G.8 BitFlow, Inc. SDK-52-55

52.53 BFIsCtn

Prototype BFBOOL BFIsCtn(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Cyton.

FALSE The board is not a Cyton.

BFIsCXP BitFlow SDK

SDK-52-56 BitFlow, Inc. Version G.8

52.54 BFIsCXP

Prototype BFBOOL BFIsCXP(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is for use with CoaXPress cameras.

FALSE The board is not for use with CoaXPress cameras.

BitFlow Miscellaneous Functions BFIsCXP2

Version G.8 BitFlow, Inc. SDK-52-57

52.55 BFIsCXP2

Prototype BFBOOL BFIsCXP2(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board has two CoaXPress inputs

FALSE The board has less than or more than two CoaXPress
inputs

BFIsCXP4 BitFlow SDK

SDK-52-58 BitFlow, Inc. Version G.8

52.56 BFIsCXP4

Prototype BFBOOL BFIsCXP4(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board has four CoaXPress inputs

FALSE The board has less than or more than four CoaXPress
inputs

BitFlow Miscellaneous Functions BFIsAon

Version G.8 BitFlow, Inc. SDK-52-59

52.57 BFIsAon

Prototype BFBOOL BFIsAon(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is in the Aon family

FALSE The board is not in the Aon family

BFIsAonCXP1 BitFlow SDK

SDK-52-60 BitFlow, Inc. Version G.8

52.58 BFIsAonCXP1

Prototype BFBOOL BFIsAonCXP1(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is an Aon-CXP1 model

FALSE The board is not an Aon-CXP1 model

BitFlow Miscellaneous Functions BFIsAxnII

Version G.8 BitFlow, Inc. SDK-52-61

52.59 BFIsAxnII

Prototype BFBOOL BFIsAxnII(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is an Axion Mark II model

FALSE The board is not an Axion Mark II model

BFIsCtnII BitFlow SDK

SDK-52-62 BitFlow, Inc. Version G.8

52.60 BFIsCtnII

Prototype BFBOOL BFIsCtnII(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Cyton MarkII model

FALSE The board is not in a Cyton Mark II model

BitFlow Miscellaneous Functions BFIsClx

Version G.8 BitFlow, Inc. SDK-52-63

52.61 BFIsClx

Prototype BFBOOL BFIsClx(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is Claxon model

FALSE The board is not a Claxon model

BFIsClxCXP2 BitFlow SDK

SDK-52-64 BitFlow, Inc. Version G.8

52.62 BFIsClxCXP2

Prototype BFBOOL BFIsClxCXP2(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Claxon CXP 2 model

FALSE The board is not a Claxon CXP 4 model

BitFlow Miscellaneous Functions BFIsClxCXP4

Version G.8 BitFlow, Inc. SDK-52-65

52.63 BFIsClxCXP4

Prototype BFBOOL BFIsAonCXP1(Bd Board)

Description Returns status of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is a Claxon CXP4 model

FALSE The board is not in Claxon CXP4 model

BFIsSynthetic BitFlow SDK

SDK-52-66 BitFlow, Inc. Version G.8

52.64 BFIsSynthetic

Prototype BFBOOL BFIsSynthetic(Bd Board)

Description Returns true if the board is configured with a synthetic camera configuration file.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board is configured to acquire from its internal
synthetic image generator

FALSE The board is configured to acquire from an external
camera

BitFlow Miscellaneous Functions BFHasSerialPort

Version G.8 BitFlow, Inc. SDK-52-67

52.65 BFHasSerialPort

Prototype BFBOOL BFHasSerialPort(Bd Board)

Description Returns availability of a serial port of current board.

Parameters Board

Board ID.

Returns

Comments This function can be used to quickly determine if the board is of the given type or has
the given feature.

TRUE The board has a CL serial port.

FALSE The board does not have a CL serial port.

BFCurrentTimeGet BitFlow SDK

SDK-52-68 BitFlow, Inc. Version G.8

52.66 BFCurrentTimeGet

Prototype BFU32 BFICurrentTimeGet(Bd Board, PBFTimeStruct Time)

Description Returns a time structure filled with the system time at the point the function was
called.

Parameters Board

Board ID.

Time

Pointer to the structure (allocated by the user) to hold the time structure.

Returns

Comments The BFTimeStruct structure contains the year (20XX), mon (1..12), yday (1..366), day
(1..31), hour (0..23), min (0..59), sec (0..59), and msec (0..999). When this function is
called, the time structure is filled with the current system time. The time structure will
remain unchanged until this function is called again, at which point the time structure
will be overwritten with the new time. Calling function BFTimeStructInit will reset all
the information in the time structure to a value of zero.

BF_OK In all cases.

BitFlow Miscellaneous Functions BFTimeStructInit

Version G.8 BitFlow, Inc. SDK-52-69

52.67 BFTimeStructInit

Prototype BFU32 BFTimeStructInit(Bd Board, PBFTimeStruct Time)

Description Sets all the information in the BitFlow time structure to zero.

Parameters Board

Board ID.

Time

Pointer to the structure (allocated by the user) to be initialized.

Returns

Comments

BF_OK In all cases.

BFHiResTimeStampInit BitFlow SDK

SDK-52-70 BitFlow, Inc. Version G.8

52.68 BFHiResTimeStampInit

Prototype BFU32 BFTimeStructInit(PBFTime pStartTime)

Description Returns the initialized base time that is required for the BFHiResTimeStamp function.

Parameters pStartTime

The returned base time.

Returns

Comments This function returns the base time that will be required for the BFHiResTimeStamp
function. The base time may drift from actual time when used for long periods of time.
(days, weeks, months, or years) Because of this it may be necessary to re-initialize the
base time to be accurate with the actual time. Because the high-resolution time stamp
uses the CPU clock to calculate the time, the drift will vary between systems. The user
will need to experiment with the how often to re-initialize the base time.

BF_OK If the function was successful.

BF_HIGH_RES_TIMER_ERR Could not retrieve the high-resolution counter.

BitFlow Miscellaneous Functions BFHiResTimeStamp

Version G.8 BitFlow, Inc. SDK-52-71

52.69 BFHiResTimeStamp

Prototype BFU32 BFHiResTimeStamp(BFTime StartTime, PBFTime pCurTime)

Description Returns the system time at the moment the function is called with a high resolution
timer.

Parameters StartTime

The base time returned from the BFHiResTimeStampInit function.

pCurTime

The returned high resolution time stamp.

Returns

Comments This time stamp uses the CPU clock to determine time. Hence, the faster the CPU the
more accurate the time stamp. Using a modern day CPU the time stamp should be
accurate to at least +/- 1mS. It is recommended that the user benchmark the time
stamp for their particular system.

BF_OK If the function was successful.

BF_HIGH_RES_TIMER_ERR Could not retrieve the high-resolution counter.

BFHiResTimeStampEx BitFlow SDK

SDK-52-72 BitFlow, Inc. Version G.8

52.70 BFHiResTimeStampEx

Prototype BFU32 BFHiResTimeStampEx(BFTime StartTime, BFU64 HiResStampTime, PBF-
Time pCurTime)

Description Converts a high resolution time stamp into a BFTime struct..

Parameters StartTime

The base time returned from the BFHiResTimeStampInit function.

HiResStampTime

The high resolution time stamp to convert.

pCurTime

The returned high resolution time stamp.

Returns

Comments The function BFHiRestTimeStamp returns the current time (as an offset from the start
time). However this function returns the time when a high resolution time stamp was
taken.

BF_OK If the function was successful.

BF_HIGH_RES_TIMER_ERR Could not retrieve the high-resolution counter.

BitFlow Miscellaneous Functions DoBrdOpenDialog

Version G.8 BitFlow, Inc. SDK-52-73

52.71 DoBrdOpenDialog

Prototype BFUPTR DoBrdOpenDialog(BFU32 Options, PBFU32 FamilyFilter, PBFU32 pFam-
ily, PBFU32 pBrdNum, PBFU32 pDoInit, PBFU32 pSerPortNum)

Description Opens a dialog to prompt the user which board to open.

Parameters Options

Options for what the dialog board will look like and what boards to present to be
opened:

BOD_NONE - Both the “Open Initalized” and “Just Open” buttons will be
part of the dialog.

BOD_HIDEJUSTOPEN - Hides the “Just Open” button on the dialog.
BOD_CLONLY - Only shows CL boards to be opened.
BOD_HIDEOPENINIT - Hides the “Open Initalized” button on the dialog.

The options can be ORed together to customize the dialog.

FamilyFilter

Option for which family of board or boards to present to be opened:

FF_ROADRUNNER - Only shows RoadRunner and R3 boards to be
opened.

FF_R64 - Only shows R64 boards to be opened.
FF_BITFLOW_MODERN - Shows all supported BitFlow boards to be

opened.

pFamily

Returns the family type of the board that was asked to be opened. The family type can
be one of the following:

FF_ROADRUNNER - A RoadRunner or R3 to be opened.
FF_R64 - A R64 board to be opened.

pBrdNum

Returns the board number of the board that is to be opened.

pDoInit

Returns whether or not the board is to be opened initalized or not. The returned value
can be one of the following:

0 - Board will open normally but not initialized.
BFSysInitialize - Board will opened and initialized.

DoBrdOpenDialog BitFlow SDK

SDK-52-74 BitFlow, Inc. Version G.8

pSerPortNum

Returns the serial port number if the board is a CL board. If the board is not a CL
board, the returned value will be 0xFFFFFFFF.

Returns

Comments This function provides a dialog box to prompt the user to which board they would like
to open. If there is only one board installed in the system, the dialog will not be dis-
played and the function returns with the board information. If there is more than one
board in the system the dialog allows the user to choose which board to open.

When the user chooses a board, the function returns with information about the
board that can then be passed on to functions that do the actual work of opening the
board.

Here are two example on how to use this function for the Ci and Bi APIs:

BFU32 Type, Num, Init, SerNum;

DoBrdOpenDialog(TRUE, FF_BITFLOW_MODERN, &Type, &Num, &Init,
&SerNum) // prompt user for the board to open
CiSysBrdFind(Type, Num, &entry) // find board
CiBrdOpen(&entry, &hBoard, Init) // open board

DoBrdOpenDialog(TRUE, FF_BITFLOW_MODERN, &Type, &Num, &Init,
&SerNum) // prompt user for the board to open
BiBrdOpen(Type, Num, &m_hBoard) // open board

BRD_DLG_OK A board was selected and the user clicked the Init or
Just open button, or there is only one board installed
and the dialog was not displayed.

BRD_DLG_NO_BOARDS There are no boards installed in the system.

BRD_DLG_USER_CANCEL The user clicked the Cancel button. This is backwards
compatible with the old return value of IDCANCEL.

BRD_DLG_MALLOC_
ERROR

There was an error allocating resources for the dia-
log.

BRD_DLG_DRIVER_ERROR There was an error communicating with the driver.

BRD_DLG_OTHER_ERROR There was an internal error creating the dialog.

BitFlow Miscellaneous Functions WaitDialogOpen

Version G.8 BitFlow, Inc. SDK-52-75

52.72 WaitDialogOpen

Prototype BFBOOL WaitDialogOpen(PBFCHAR Msg, PBFU32 pHandle)

Description A generic dialog to display different wait messages.

Parameters Msg

The message to be displayed in the dialog box.

pHandle

A handle to the dialog box.

Returns

Comments This function is used primarily to give the user some feedback when there is a event
happening that may require some time, such are opening a board or saving a
sequence of images to disk.

This function works in conjunction with the WaitDialogClose function, to close the dia-
log when the event we’re waiting for completes.

TRUE If successful.

FALSE Could not create the dialog box.

WaitDialogClose BitFlow SDK

SDK-52-76 BitFlow, Inc. Version G.8

52.73 WaitDialogClose

Prototype BFBOOL WaitDialogClose(BFU32 pHandle)

Description Closes the dialog opened by WaitDialogOpen.

Parameters pHandle

Handle to the dialog to be closed.

Returns

Comments This function will close the dialog box opened by the WaitDialogOpen function. Pass
this function the pHandle that was returned by the WaitDialogOpen function.

TRUE If successful.

FALSE Function failed.

BitFlow Miscellaneous Functions WaitDialogClose

Version G.8 BitFlow, Inc. SDK-52-77

52.74 WaitDialogClose

Prototype BFBOOL WaitDialogClose(BFU32 pHandle)

Description Closes the dialog opened by WaitDialogOpen.

Parameters pHandle

Handle to the dialog to be closed

Returns

Comments This function will close the dialog box opened by the WaitDialogOpen function. Pass
this function the pHandle that was returned by the WaitDialogOpen function.

TRUE If successful.

FALSE Function failed.

ChoiceDialog BitFlow SDK

SDK-52-78 BitFlow, Inc. Version G.8

52.75 ChoiceDialog

Prototype BFBOOL ChoiceDialog(PBFCHAR *ChoiceList, BFU32 NumChoices, BFU32 Cur-
rentChoiceIndex, PBFCHAR Choice, BFSIZET ChoiceSize)

Description Pops up a simple dialog offering the user a choice of options

Parameters ChoiceList

An array of strings containing the list of choices

NumChoices

The number of choices in the list

CurrentChoiceIndex

The choice in the list that should be highlighted when the dialog pops up

Choice

The string corresponding to the choice that the user selected

ChoiceSize

The size of the buffer pointed to by the destination string Choice

Returns

Comments This function is just a simple wrapper around a Win32 native dialog.

TRUE The user made a choice and hit “OK”

FALSE The user chose “Cancel”

BitFlow Miscellaneous Functions BFGetCurrentFimwareName

Version G.8 BitFlow, Inc. SDK-52-79

52.76 BFGetCurrentFimwareName

Prototype BFCRC BFGetCurrentFimwareName(Bd Board, PBFCHAR FWRoot, PBFCHAR
FWFileName, BFU32 FWFileNameSize)

Description Returns the name of the firmware file currently download to the board.

Parameters Board

Board ID.

FWRoot

Root or token of FPGA whose firmware file name is to be retrieved. For all modern
frame grabbers this should be set to “MUX”.

FWFileName

Name of firmware file used to source the firmware

FWFileNameSize

Size of FWFileName (bytes)

Returns

Comments This function returns information about the firmware currently loaded on the board.

BF_OK Success

BF_NOT_SUPPORTED Current board is not supported by this function

BF_REGISTRY_ERROR Error accessing the Registry

BFGetVFGNum BitFlow SDK

SDK-52-80 BitFlow, Inc. Version G.8

52.77 BFGetVFGNum

Prototype BFU32 BFGetVFGNum(Bd Board)

Description Get the VFG Number of the given board.

Parameters Board

Board ID.

Returns

Comments This function returns the VFG number of the give board. Some BitFlow frame grab-
bers have more that one Virtual Frame Grabber (VFG). They are physically a single
board, but the look like multiple devices to software. For boards that support more
than one VFG this function can be used to determine with VFG number the current
board is.

VFG Number In all cases.

BitFlow Miscellaneous Functions BFReadSerialNumberString

Version G.8 BitFlow, Inc. SDK-52-81

52.78 BFReadSerialNumberString

Prototype void BFReadSerialNumberString(Bd Board, PBFCHAR pSerialNumberString,
BFSIZET SerialNumberStringSize)

Description Returns the serial number string of the given board.

Parameters Board

Board ID.

SerialNumberString

String to receive the serial number string. If the board does not support serial num-
bers or the board has not been programmed with a serial number the parameter will
be returned empty, SerialNumberString[0] = 0.

SerialNumberStringSize

Size in bytes of the string pointed to by SerialNumberString.

Comments This function returns the serial number string stored on the given board. Note that this
function is not supported for all models. The board does not support a serial number
string then the SerialNumberString[0] = 0.

BFOutputDebugString BitFlow SDK

SDK-52-82 BitFlow, Inc. Version G.8

52.79 BFOutputDebugString

Prototype void BFOutputDebugString(PBFCHAR OutputString)

Description Sends a message to the BitFlow logging utility, BFLog.

Parameters OutputString

String to sent to logger.

Comments This function sends a message the BitFlow logging utility, called BFLog. All messages
are time stamped and displayed as they are received. Other components of the Bit-
Flow driver and DLLs will also send messages to BFLog, some message types are
color coded. Message logs can be saved to disk.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-53-1

BitFlow Disk I/O Functions

Chapter 53

53.1 Introduction

This chapter contains functions that are associated with reading and writing to disk.

BFIOWriteSingle BitFlow SDK

SDK-53-2 BitFlow, Inc. Version G.8

53.2 BFIOWriteSingle

Prototype BFU32 BFIOWriteSingle(char* FileName, PBFU32 pBuffer, BFU32 XSize, BFU32
YSize, BFU32 BitDepth, BFU32 Options)

Description Writes one buffer to a file on the disk in the BMP, TIFF, or raw file format.

Parameters FileName

The file name to be saved to disk. The file name includes the file extension. Valid file
extensions are .bmp,.raw,.tif and.tiff. The file name is case insensitive.

pBuffer

Pointer to the image data.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

Options

The options for saving a buffer to disk are:

SwapRGB - Swap the RGB format to BGR.
PACK32TO24BIT - Packs 32 bit (RGBX) data into 24 bit data (RGB).
UNPACKPIXELS - The pixels in the image buffers are presumed to be

packed 10 or 12 bit pixels. Using this option the pixels will be
unpacked into 16-bit words. This option is only supported for TIFF
files.

BOTTOM_UP - Saves the data to disk upside down from what is being dis-
played.

OVERWRITE - If the file already exists, it will be overwritten. Default behav-
ior is to return an error and not overwrite an existing file.

Returns

BF_OK Function was successful.

BF_ER_FILE_NAME No file name given.

BF_ER_BUF_POINTER Invalid buffer pointer.

BitFlow Disk I/O Functions BFIOWriteSingle

Version G.8 BitFlow, Inc. SDK-53-3

BF_ER_NUM_BUFFERS The number of buffers must be greater than zero.

BF_ER_XSIZE Invalid XSize. The XSize must be greater than zero.

BF_ER_YSIZE Invalid YSize. The YSize must be greater than zero.

BF_ER_BITDEPTH_
UNKNOWN

Unknown bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_BITDEPTH_
SWAPRGB

The bit depth must be greater than or equal to 24 to
use the SWAPRGB option.

BF_ER_PACK24_BITDETPH Must start with 32 bit data to use the PACK32-
TO24BIT option.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8, 24 and 32
bit pixel depths.

BF_ER_BMP_OPEN_FILE Failed opening BMP file.

BF_ER_BMP_FILE_HEADER Failed writing BMP header to file.

BF_ER_BMP_DATA_WRITE Failed writing image data to BMP file.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_TIF_BIT_DEPTH Invalid tif bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_FILE_HEADER Failed writing tif header to file.

BF_ER_TIF_DATA_WRITE Failed writing image data to tif file.

BF_ER_RAW_OPEN_FILE Failed opening raw file.

BF_ER_RAW_DATA_WRITE Failed writing image data to raw file.

BF_ER_AVI_BIT_DEPTH Invalid bit depth for AVI. AVI supports 8, 24 and 32
bit pixel depths.

BF_ER_AVI_OPEN_FILE Failed opening AVI file.

BF_ER_AVI_DATA_WRITE Failed writing image data to the AVI stream.

BF_ER_CREATE_STREAM Error creating AVI stream.

BF_ER_SAVE_OPTIONS Error with dialog box save options for AVI.

BF_ER_COMPRESS_STREAM Error with compressing the stream.

BF_ER_AVI_HEADER Error putting AVI header in the stream.

BF_ER_FILE_FORMAT Invalid file format. Please use BMP, TIFF, or raw.

BF_ER_RAW_OPEN_TEXT-
FILE

Failed to open the text file to write raw image file
information.

BF_ER_RAW_TEXT_WRITE Failed to write the data to the raw text file.

BFIOWriteSingle BitFlow SDK

SDK-53-4 BitFlow, Inc. Version G.8

Comments This function will write image data to disk in either the BMP, tif or raw file formats.

If the raw file format is used, a text file with the same name as the file saved will also be
generated that will contain the xsize, ysize and bit depth for the saved image. This
information will become useful when trying to open a raw file type.

If no path is used in the file name parameter, the file will be saved in the same direc-
tory as the application is being run from.

BitFlow Disk I/O Functions BFIOWriteMultiple

Version G.8 BitFlow, Inc. SDK-53-5

53.3 BFIOWriteMultiple

Prototype BFU32 BFIOWriteMultiple(char* FileName, PBFU32 *pBufArray, BFU32 StartNum,
BFU32 XSize, BFU32 YSize, BFU32 BitDepth, BFU32 NumBuffers, BFU32 Options)

Description Writes multiple buffers to multiple files on the disk in BMP, TIFF, AVI or raw file for-
mats.

Parameters FileName

The file name to be saved to disk. The file name includes the file extension. Valid file
extensions are .bmp, .raw, .tif, .tiff and .avi. The file name is case insensitive.

*pBufArray

Pointer to the array of pointers that point to the image data.

StartNum

Specifies the first number to start the file names with. If StartNum = 5, the first file
name will be "‘XXXX00000005.BMP", but contain image data from buffer 0.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

NumBuffers

The number of buffers to be written.

Options

The options for saving a buffer to disk are:

SwapRGB - Swap the RGB format to BGR.
PACK32TO24BIT - Packs 32 bit (RGBX) data into 24 bit data (RGB).
UNPACKPIXELS - The pixels in the image buffers are presumed to be

packed 10 or 12 bit pixels. Using this option the pixels will be
unpacked into 16-bit words. This option is only supported for TIFF
files.

BOTTOM_UP - Saves the data to disk upside down from what is being dis-
played.

OVERWRITE - If the file already exists, it will be overwritten. Default behav-

BFIOWriteMultiple BitFlow SDK

SDK-53-6 BitFlow, Inc. Version G.8

ior is to return an error and not overwrite an existing file.

Returns

BF_OK Function was successful.

BF_ER_FILE_NAME No file name given.

BF_ER_BUF_POINTER Invalid buffer pointer.

BF_ER_NUM_BUFFERS The number of buffers must be greater than zero.

BF_ER_XSIZE Invalid XSize. The XSize must be greater than zero.

BF_ER_YSIZE Invalid YSize. The YSize must be greater than zero.

BF_ER_BITDEPTH_
UNKNOWN

Unknown bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_BITDEPTH_
SWAPRGB

The bit depth must be greater than or equal to 24 to
use the SWAPRGB option.

BF_ER_PACK24_BITDETPH Must start with 32 bit data to use the PACK32-
TO24BIT option.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8, 24 and 32
bit pixel depths.

BF_ER_BMP_OPEN_FILE Failed opening BMP file.

BF_ER_BMP_FILE_
HEADER

Failed writing BMP header to file.

BF_ER_BMP_DATA_WRITE Failed writing image data to BMP file.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_TIF_BIT_DEPTH Invalid tif bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_FILE_HEADER Failed writing tif header to file.

BF_ER_TIF_DATA_WRITE Failed writing image data to tif file.

BF_ER_RAW_OPEN_FILE Failed opening raw file.

BF_ER_RAW_DATA_WRITE Failed writing image data to raw file.

BF_ER_AVI_BIT_DEPTH Invalid bit depth for AVI. AVI supports 8, 24 and 32
bit pixel depths.

BF_ER_AVI_OPEN_FILE Failed opening AVI file.

BF_ER_AVI_DATA_WRITE Failed writing image data to the AVI stream.

BF_ER_CREATE_STREAM Error creating AVI stream.

BF_ER_SAVE_OPTIONS Error with dialog box save options for AVI.

BitFlow Disk I/O Functions BFIOWriteMultiple

Version G.8 BitFlow, Inc. SDK-53-7

Comments This function will write a sequence of images to disk in either the bmp, tif, avi or raw
file formats. The files will be sequentially named.

If the raw file format is used, a text file with the same name as the file saved will also be
generated that will contain the xsize, ysize and bit depth for the saved image. This
information will become useful when trying to open a raw file type. Only one file will
be written per sequence (i.e. on file is written each time this function is called).

If no path is used in the file name parameter, the file will be saved in the same direc-
tory as the application is being run from.

BF_ER_COMPRESS_
STREAM

Error with compressing the stream.

BF_ER_AVI_HEADER Error putting AVI header in the stream.

BF_ER_FILE_FORMAT Invalid file format. Please use bmp, tif, raw or avi.

BF_ER_RAW_OPEN_TEXT-
FILE

Failed to open the text file to write raw image file
information.

BF_ER_RAW_TEXT_WRITE Failed to write the data to the raw text file.

BFIOReadSingle BitFlow SDK

SDK-53-8 BitFlow, Inc. Version G.8

53.4 BFIOReadSingle

Prototype BFU32 BFIOReadSingle(char* FileName, PBFU32 pBuffer, BFU32 XSize, BFU32
YSize, BFU32 BitDepth)

Description Reads in a single frame from a file on the disk into memory allocated by the user.

Parameters FileName

The file to be read into memory. The file name includes the file path and extension.
Valid file extensions are .bmp, .raw, .tif and .tiff. The file name is case insensitive.

pBuffer

The buffer the file will be read into. This buffer is allocated by the user.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

Returns

Comments This function reads a single file from disk into user allocated memory. This function
can read bmp, raw or tif file formats.

BF_OK Function was successful.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8 and 24 bit
pixel depths.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_BMP_OPEN_FILE Failed opening BMP file

BF_ER_BMP_DATA_READ Failed reading image data from BMP file.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_DATA_READ Failed reading image data from tif file.

BF_ER_AVI_READ_SINGLE Can’t read an AVI file with this function. Use BFIORe-
adMultiple to read an AVI file.

BF_ER_FILE_FORMAT Invalid file format. Please use BMP, TIFF or AVI

BitFlow Disk I/O Functions BFIOReadSingle

Version G.8 BitFlow, Inc. SDK-53-9

This function was written to read in files that were saved to disk from BitFlow’s write
single and multiple functions. BitFlow can not guarantee successful reading of a file
from anything other than BitFlow’s write functions.

BFIOReadMultiple BitFlow SDK

SDK-53-10 BitFlow, Inc. Version G.8

53.5 BFIOReadMultiple

Prototype BFU32 BFIOReadMultiple(char* FileName, PBFU32 *pBufArray, BFU32 XSize,
BFU32 YSize, BFU32 BitDepth, BFU32 NumBuffers, BFU32 AVIStartFrame)

Description Reads in a sequence of files into user allocated memory.

Parameters FileName

The first file to be read into memory. The file name should include the path and file
extension. Valid file extensions are .bmp, .raw, .tif, .tiff and .avi. The file name is case
insensitive.

*pBufArray

Pointer to an array of pointers to user allocated buffers, where the files will be read
into.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

NumBuffers

The number of buffers to be read into.

AVIStartFrame

The first frame out of an AVI file to be read into memory. This parameter will be ignore
for all file formats except the AVI format.

Returns

BF_OK Function was successful.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8 and 24 bit
pixel depths.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_BMP_OPEN_FILE Failed opening BMP file

BF_ER_BMP_DATA_READ Failed reading image data from BMP file.

BitFlow Disk I/O Functions BFIOReadMultiple

Version G.8 BitFlow, Inc. SDK-53-11

Comments This function reads in a sequence of files into memory. This function supports bmp, tif,
raw and avi file formats. After the first file specified by the FileName parameter, the
number of the file will be incremented and then read into memory. The number of
reads will continue based on the NumBuffers parameter.

This function was written to read in files that were saved to disk from BitFlow’s write
single and multiple functions. BitFlow can not guarantee successful reading of a file
from anything other than BitFlow’s write functions.

Note: As of SDK version 5.00 a 8 digit number is appended to the file name when
writing multiple files. In SDK versions before 5.00 a 6 digit number was appended.
For example, FileName000000.bmp has now become FileName00000000.bmp. Files
that were saved with the 6 digit number will fail to be read with the SDK 5.00 multiple
read. In order to have those file read in properly, the file name will need to be
updated to have the 8 digit number.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_DATA_READ Failed reading image data from tif file.

BF_ER_AVI_READ_SINGLE Can’t read an AVI file with this function. Use BFIORe-
adMultiple to read an AVI file.

BF_ER_FILE_FORMAT Invalid file format. Please use BMP, TIFF or AVI

BFIOReadParameters BitFlow SDK

SDK-53-12 BitFlow, Inc. Version G.8

53.6 BFIOReadParameters

Prototype BFU32 BFIOReadParameters(char* FileName, PBFU32 XSize, PBFU32 YSize,
PBFU32 BitDepth, PBFU32 NumFrames)

Description Reads back the parameters of a bmp, avi or tif file.

Parameters FileName

The file to read the parameters from. The path and file extension are included. Valid
file extensions are .bmp, .tif, .tiff and .avi. The file name is case insensitive.

XSize

The returned width of the image in pixels

YSize

The returned height of the image in lines.

BitDepth

The returned depth of the pixels in bits.

NumFrames

Returns the number of frames in a multi-framed format (AVI). For all other formats, this
value will be one.

Returns

Comments This function reads and returns the xsize, ysize, bit depth and number of frames for
multi-framed formats, from the file’s header. Since the raw file format has no header
information, this function will only work for BMP, TIFF and AVI file formats.

The NumFrames parameter will always return the value of one for all file formats
except for AVI. For the AVI format, the number of frames that make up the AVI will be
returned.

BF_OK Function was successful.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_RAW_READ_
PARAMS

Can’t read parameters from raw file format.

BF_ER_OPEN_FILE Error opening file to read header information.

BF_ER_DATA_READ Error reading in header information.

BF_ER_FILE_FORMAT A file format is being used other that BMP, tif or AVI.

BitFlow Disk I/O Functions BFIOSaveDlg

Version G.8 BitFlow, Inc. SDK-53-13

53.7 BFIOSaveDlg

Prototype BFU32 BFIOSaveDlg(BFBOOL SingleFrame, char* FileName, BFSIZET FileNameS-
ize)

Description Provides a dialog box to specify a file name to save to disk.

Parameters SingleFrame

Determines which file formats can be saved:

TRUE - Gives options for BMP, tif and raw.
FALSE - Gives options for BMP, tif, raw and AVI.

FileName

Returns the file name for the file.

FileNameSize

The size in bytes of the FileName parameter buffer.

Returns

Comments This function provides a dialog box to prompt the user for a file name, location and
file format to save image data to disk. The name of the file is returned from this file
and can then be passed on the one of the write functions.

BF_OK Function was successful.

BF_CANCEL User cancelled the dialog box.

BFIOOpenDlg BitFlow SDK

SDK-53-14 BitFlow, Inc. Version G.8

53.8 BFIOOpenDlg

Prototype BFU32 BFIOOpenDlg(char* FileName, BFSIZET FileNameSize)

Description A dialog to retrieve a file.

Parameters FileName

Returns the file name to be opened. The file name includes the file extension and
path.

FileNameSize

The size in bytes of the FileName parameter buffer.

Returns

Comments This function brings up the open dialog so the user can pick a file to open. The file
name can then be passed on to one of the read functions.

BF_OK Function was successful.

BF_CANCEL User cancelled the dialog box.

BitFlow Disk I/O Functions BFIOErrorShow

Version G.8 BitFlow, Inc. SDK-53-15

53.9 BFIOErrorShow

Prototype BFU32 BFIOErrorShow(BFU32 ErrorCode)

Description Displays a dialog box with information about the error.

Parameters ErrorCode

The error code to get the description for.

Returns

Comments This function will give a description of the error that has been returned by one on the
BFIO functions. This function will only work correctly with the BFIO disk functions in
this chapter.

BF_OK In all cases.

BFIOErrorGetMes BitFlow SDK

SDK-53-16 BitFlow, Inc. Version G.8

53.10 BFIOErrorGetMes

Prototype BFU32BFIOErrorGetMes(BFU32 ErrorCode, PBFCHAR Message, PBFU32 pMes-
sageBufSize)

Description Returns the error text for a given BFIO error code.

Parameters ErrorCode

The error code to get the description for.

Message

Pointer to the output string buffer. May be provided as a null pointer, to retrieve just
the pMessageBufSize. Message is filled as completely as possible, even if shorter
than the total message length

pMessageBufSize

Pointer to the message buffer size. On input, this should be the size of the Message
buffer (if Message is non-null). On output, this is set to the total size of the error mes-
sage, including the null terminator.

Returns

Comments Retrieve the error text associated with a BFIO error code. Note this function should
only be used with errors returned from BFIOxxx functions.

BF_OK Success.

BF_ER_UNKNOWN_
ERROR_CODE

The value passed in the parameter ErrorCode is not
an error code returned from any BFIOxxx function.

BF_ER_BAD_BUFFER_
LENGTH

Error with buffer sizes or pointers.

BitFlow Disk I/O Functions BFIOWriteSingleEx

Version G.8 BitFlow, Inc. SDK-53-17

53.11 BFIOWriteSingleEx

Prototype BFU32 BFIOWriteSingleEx(char* FileName, PBFU32 pBuffer, BFU32 XSize, BFU32
YSize, BFU32 BitDepth, BFU32 Options, PBFIOParams Params)

Description Writes one buffer to a file on the disk in the DNG, BMP, TIFF, or raw file format with
metadata support.

Parameters FileName

The file name to be saved to disk. The file name includes the file extension. Valid file
extensions are .bmp,.raw,.tif and.tiff. The file name is case insensitive.

pBuffer

Pointer to the image data.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

Options

The options for saving a buffer to disk are:

SwapRGB - Swap the RGB format to BGR.
PACK32TO24BIT - Packs 32 bit (RGBX) data into 24 bit data (RGB).
BOTTOM_UP - Saves the data to disk upside down from what is being dis-

played.
OVERWRITE - If the file already exists, it will be overwritten. Default behav-

ior is to return an error and not overwrite an existing file.

Params

A pointer to a BFIOParams structure. This provide support for inserting metadata in
the file. Metadata is only supported for TIFF and DNG files. It is optional for TIFF files
and required for DNG files. This pointer must be pre-allocated using BFIOMakeEx-
Params.

Returns

BF_OK Function was successful.

BFIOWriteSingleEx BitFlow SDK

SDK-53-18 BitFlow, Inc. Version G.8

BF_ER_FILE_NAME No file name given.

BF_ER_BUF_POINTER Invalid buffer pointer.

BF_ER_NUM_BUFFERS The number of buffers must be greater than zero.

BF_ER_XSIZE Invalid XSize. The XSize must be greater than zero.

BF_ER_YSIZE Invalid YSize. The YSize must be greater than zero.

BF_ER_BITDEPTH_
UNKNOWN

Unknown bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_BITDEPTH_
SWAPRGB

The bit depth must be greater than or equal to 24 to
use the SWAPRGB option.

BF_ER_PACK24_BITDETPH Must start with 32 bit data to use the PACK32-
TO24BIT option.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8, 24 and 32
bit pixel depths.

BF_ER_BMP_OPEN_FILE Failed opening BMP file.

BF_ER_BMP_FILE_HEADER Failed writing BMP header to file.

BF_ER_BMP_DATA_WRITE Failed writing image data to BMP file.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_TIF_BIT_DEPTH Invalid tif bit depth. The bit depth must be 8, 10, 12,
14, 16, 24 or 32.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_FILE_HEADER Failed writing tif header to file.

BF_ER_TIF_DATA_WRITE Failed writing image data to tif file.

BF_ER_RAW_OPEN_FILE Failed opening raw file.

BF_ER_RAW_DATA_WRITE Failed writing image data to raw file.

BF_ER_AVI_BIT_DEPTH Invalid bit depth for AVI. AVI supports 8, 24 and 32
bit pixel depths.

BF_ER_AVI_OPEN_FILE Failed opening AVI file.

BF_ER_AVI_DATA_WRITE Failed writing image data to the AVI stream.

BF_ER_CREATE_STREAM Error creating AVI stream.

BF_ER_SAVE_OPTIONS Error with dialog box save options for AVI.

BF_ER_COMPRESS_STREAM Error with compressing the stream.

BF_ER_AVI_HEADER Error putting AVI header in the stream.

BF_ER_FILE_FORMAT Invalid file format. Please use BMP, TIFF, or raw.

BitFlow Disk I/O Functions BFIOWriteSingleEx

Version G.8 BitFlow, Inc. SDK-53-19

Comments This function will write image data to disk in either the BMP, TIFF, raw or DNG file for-
mats. This function has expanded capabilities over the BFIOWriteSingle in that it adds
support for the DNG file format as well as supporting metadata for both TIFF and
DNG formats.

If the raw file format is used, a text file with the same name as the file saved will also be
generated that will contain the xsize, ysize and bit depth for the saved image. This
information will become useful when trying to open a raw file type.

If no path is used in the file name parameter, the file will be saved in the same direc-
tory as the application is being run from.

BF_ER_RAW_OPEN_TEXT-
FILE

Failed to open the text file to write raw image file
information.

BF_ER_RAW_TEXT_WRITE Failed to write the data to the raw text file.

BFIOReadSingleEx BitFlow SDK

SDK-53-20 BitFlow, Inc. Version G.8

53.12 BFIOReadSingleEx

Prototype BFU32 BFIOReadSingleEx(char* FileName, PBFU32 pBuffer, BFU32 XSize, BFU32
YSize, BFU32 BitDepth, PBFIOParams Params)

Description Reads in a single frame from a file on the disk into memory allocated by the user. Sup-
ports BMP, TIFF, Raw and DNG file formats.

Parameters FileName

The file to be read into memory. The file name includes the file path and extension.
Valid file extensions are .bmp, .raw, .tif and .tiff. The file name is case insensitive.

pBuffer

The buffer the file will be read into. This buffer is allocated by the user.

XSize

Width of the image in pixels.

YSize

Height of the image in lines.

BitDepth

Depth of the pixels in bits.

Params

A pointer to an allocated BFIOParams structure. This pointer must be pre-allocated
using BFIOMakeExParams. This provide support for reading metadata from the file.
Metadata is only supported for TIFF and DNG files.

Returns

BF_OK Function was successful.

BF_ER_BMP_BIT_DEPTH Invalid bit depth for BMP. BMP supports 8 and 24 bit
pixel depths.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_BMP_OPEN_FILE Failed opening BMP file

BF_ER_BMP_DATA_READ Failed reading image data from BMP file.

BF_ER_TIF_OPEN_FILE Failed opening tif file.

BF_ER_TIF_DATA_READ Failed reading image data from tif file.

BitFlow Disk I/O Functions BFIOReadSingleEx

Version G.8 BitFlow, Inc. SDK-53-21

Comments This function reads a single file from disk into user allocated memory. This function
can read BMP, TIFF, raw or DNG file formats. This function has expanded capabilities
over the BFIOReadSingle in that it adds support for the DNG file format as well as sup-
porting metadata for both TIFF and DNG formats.

This function was written to read in files that were saved to disk from BitFlow’s write
single and multiple functions. BitFlow can not guarantee successful reading of a file
from anything other than BitFlow’s write functions.

BF_ER_AVI_READ_SINGLE Can’t read an AVI file with this function. Use BFIORe-
adMultiple to read an AVI file.

BF_ER_FILE_FORMAT Invalid file format. Please use BMP, TIFF or AVI

BFIOReadParametersEx BitFlow SDK

SDK-53-22 BitFlow, Inc. Version G.8

53.13 BFIOReadParametersEx

Prototype BFU32 BFIOReadParametersEx(char* FileName, PBFU32 XSize, PBFU32 YSize,
PBFU32 BitDepth, PBFU32 NumFrames, PBFIOParams Params)

Description Reads back the parameters of a BMP, AVI, TIFF or DNG file. The Ex version of this func-
tion also reads TIFF and DNG metadata.

Parameters FileName

The file to read the parameters from. The path and file extension are included. Valid
file extensions are .bmp, .tif, .tiff and .avi. The file name is case insensitive.

XSize

The returned width of the image in pixels

YSize

The returned height of the image in lines.

BitDepth

The returned depth of the pixels in bits.

NumFrames

Returns the number of frames in a multi-framed format (AVI). For all other formats, this
value will be one.

Params

A pointer to an allocated BFIOParams structure. This pointer must be pre-allocated
using BFIOMakeExParams. This provide support for reading metadata from the file.
Metadata is only supported for TIFF and DNG files.

Returns

BF_OK Function was successful.

BF_ER_LOW_MEM Failed allocating memory. Free resources and try
again.

BF_ER_RAW_READ_
PARAMS

Can’t read parameters from raw file format.

BF_ER_OPEN_FILE Error opening file to read header information.

BF_ER_DATA_READ Error reading in header information.

BF_ER_FILE_FORMAT A file format is being used other that BMP, tif or AVI.

BitFlow Disk I/O Functions BFIOReadParametersEx

Version G.8 BitFlow, Inc. SDK-53-23

Comments This function reads and returns the xsize, ysize, bit depth and number of frames for
multi-framed formats, from the file’s header. Since the raw file format has no header
information, this function will only work for BMP, TIFF, AVI and DNG file formats. This
function has expanded capabilities over the BFIOReadParameters in that it adds sup-
port for the DNG file format as well as supporting metadata for both TIFF and DNG
formats.

The NumFrames parameter will always return the value of one for all file formats
except for AVI. For the AVI format, the number of frames that make up the AVI will be
returned.

BFIOMakeExParams BitFlow SDK

SDK-53-24 BitFlow, Inc. Version G.8

53.14 BFIOMakeExParams

Prototype PBFIOParams BFIOMakeExParams()

Description Allocates a BFIOParams .

Returns A pointer to a fully allocated BFIOParams structure.

Comments The parameters structure is returned in a cleared/initial state and read to be used by
BFIOWriteSingleEx, BFIOReadSingleEx and BFIOReadParametersEx.

If calling BFIOWriteSingleEx repeatedly, the BFIOParams structure must be re-initial-
ized before each call. The function BFIOClearExParams is provided for this purposed
BFIOClearExParams simply returns the structure to its initial that state. BFIOClearEx-
Params allows reuse of a handle without having to manually reset every parameter.
This is efficient than call BFIOMakeExParams and BFIOFreeExParams repeatedly.

When the structure is no longer needed, free the structure using the function BFIOF-
reeExParams.

BitFlow Disk I/O Functions BFIOFreeExParams

Version G.8 BitFlow, Inc. SDK-53-25

53.15 BFIOFreeExParams

Prototype BFU32 BFIOFreeExParams(PBFIOParams Params)

Description Frees the memory associated with a BFIOParams .

Parameters Params

A pointer to an allocated BFIOParams structure. This pointer must be pre-allocated
using BFIOMakeExParams.

Returns

Comments This function frees all the memory associated with a BFIOParams structure.

BF_OK Function was successful.

BF_ER_INVALID_PARAMS_
STRUCT

Params is a null pointer.

BFIOClearExParams BitFlow SDK

SDK-53-26 BitFlow, Inc. Version G.8

53.16 BFIOClearExParams

Prototype BFU32 BFIOClearExParams(PBFIOParams Params)

Description Set a BFIOParams structure to default values.

Parameters Params

A pointer to an allocated BFIOParams structure. This pointer must be pre-allocated
using BFIOMakeExParams.

Returns

Comments This function fills out a BFIOParams structure with default values. After calling this
function the structure can be further customized with values pertinent from your
application.

If calling BFIOWriteSingleEx repeatedly, the BFIOParams structure must be re-initial-
ized before each call. The function BFIOClearExParams is provided for this purposed
BFIOClearExParams simply returns the structure to its initial that state. BFIOClearEx-
Params allows reuse of a handle without having to manually reset every parameter.
This is efficient than call BFIOMakeExParams and BFIOFreeExParams repeatedly.

Use BFIOMakeExParams to allocate and initialize a BFIOParams structure.

When the structure is no longer needed, free the structure using the function BFIOF-
reeExParams.

BF_OK Function was successful.

BF_ER_INVALID_PARAMS_
STRUCT

Params is a null pointer.

BitFlow SDK

Version G.8 BitFlow, Inc. SDK-54-1

BitFlow Types

Chapter 54

54.1 List of Defined Types

The Table 54-1 identifies the BitFlow defined types.

Note: BFSPTR and BFUPTR are the size of a signed/unsigned (respectively) pointer in the
given operating system. This means for 32-bit operating systems, these will be 4 byte
pointers and for 64-bit operating systems these will be 8 byte pointers.

Table 54-1 BitFlow Types

Standard C Microsoft Type BitFlow Type BitFlow Pointer

void void BFVOID *PBFVOID

char char BFCHAR *PBFCHAR

char _int8 BFS8 *PBFS8

unsigned char unsigned_int8 BFU8 *PBFU8

short _int16 BFS16 *PBFS16

unsigned short unsigned_int16 BFU16 *PBFU16

long int_32 BFS32 *PBFS32

unsigned long unsigned_int32 BFU32 *PBFU32

int int BFBOOL *PBFBOOL

_int64 BFU64 *PBFU64

unsigned _int64 BFS64 *PBFS64

size_t size_t BFSIZET *PBFSIZET

See note below BFSPTR *PBFSPTR

See note below BFUPTR *PBFUPTR

List of Defined Types BitFlow SDK

SDK-54-2 BitFlow, Inc. Version G.8

Index

BitFlow, Inc.

Index

B

BFBuildNumber SDK-51-3
BFChainSIPDisable SDK-52-5
BFChainSIPEnable SDK-52-4
BFCurrentTimeGet SDK-52-68
BFCXPConfigureLinkSpeed SDK-48-7
BFCXPFindMasterLink SDK-48-8
BFCXPIsPowerUp SDK-48-9
BFCXPReadData SDK-48-4
BFCXPReadReg SDK-48-2
BFCXPWriteData SDK-48-6
BFCXPWriteReg SDK-48-3
BFDrvReady SDK-52-16
BFDVersion SDK-51-2
BFErrorCheck SDK-49-5
BFErrorClearAll SDK-49-6
BFErrorClearLast SDK-49-8
BFErrorDefaults SDK-49-9
BFErrorGetLast SDK-49-7, SDK-49-10
BFErrorShow SDK-49-4
BFErVersion SDK-51-2
BFFineDelta SDK-52-14
BFFineWait SDK-52-15
BFGetCurrentFimwareName SDK-52-79
BFGetVFGNum SDK-52-80
BFHasSerialPort SDK-52-67
BFHiResTimeStamp SDK-52-71
BFHiResTimeStampEx SDK-52-72
BFHiResTimeStampInit SDK-52-70
BFIOClearExParams SDK-53-26
BFIOErrorShow SDK-53-15, SDK-53-16
BFIOFreeExParams SDK-53-25
BFIOMakeExParams SDK-53-24
BFIOOpenDlg SDK-53-14
BFIOReadMultiple SDK-53-10
BFIOReadParameters SDK-53-12
BFIOReadParametersEx SDK-53-22
BFIOReadSingle SDK-53-8
BFIOReadSingleEx SDK-53-20
BFIOSaveDlg SDK-53-13
BFIOWriteMultiple SDK-53-5
BFIOWriteSingle SDK-53-2
BFIOWriteSingleEx SDK-53-17
BFIs SDK-52-51
BFIsAlta SDK-52-38

BFIsAlta1 SDK-52-39
BFIsAlta2 SDK-52-40
BFIsAlta4 SDK-52-41
BFIsAltaAN SDK-52-49
BFIsAltaCO SDK-52-50
BFIsAon SDK-52-59
BFIsAonCXP1 SDK-52-60
BFIsAxn SDK-52-43
BFIsAxn1xE SDK-52-44
BFIsAxn2xB SDK-52-46
BFIsAxn2xE SDK-52-45
BFIsAxn4xB SDK-52-47
BFIsAxnII SDK-52-61
BFIsCL SDK-52-17
BFIsClx SDK-52-63
BFIsClxCXP2 SDK-52-64
BFIsClxCXP4 SDK-52-65
BFIsCtn SDK-52-55
BFIsCtnII SDK-52-62
BFIsCXP SDK-52-56
BFIsCXP2 SDK-52-57
BFIsCXP4 SDK-52-58
BFIsEncDiv SDK-52-52
BFIsGn2 SDK-52-54
BFIsKbn SDK-52-25
BFIsKbn2 SDK-52-27
BFIsKbn4 SDK-52-26
BFIsKbnBase SDK-52-28
BFIsKbnCXP SDK-52-30
BFIsKbnCXP1 SDK-52-31
BFIsKbnCXP2 SDK-52-32
BFIsKbnCXP4 SDK-52-33
BFIsKbnFull SDK-52-29
BFIsNeonBase SDK-52-34
BFIsNeonD SDK-52-35
BFIsNeonQ SDK-52-36, SDK-52-37
BFIsNTG SDK-52-53
BFIsPLDA SDK-52-24
BFIsPMC SDK-52-23
BFIsR2 SDK-52-19
BFIsR3 SDK-52-18
BFIsR64 SDK-52-21, SDK-52-22
BFIsRv SDK-52-20
BFIsSlave SDK-52-42, SDK-52-48
BFIsSynthetic SDK-52-66
BFQTABModeRequest SDK-52-2

Index

BitFlow, Inc.

BFReadFWRevision SDK-51-5
BFReadHWRevision SDK-51-4
BFReadSerialNumberString SDK-52-81, SDK-
52-82
BFRegAddr SDK-50-12
BFRegFlags SDK-50-7
BFRegMask SDK-50-9
BFRegName SDK-50-6
BFRegObjectId SDK-50-10
BFRegPeek SDK-50-2
BFRegPeekWait SDK-50-3
BFRegPoke SDK-50-4
BFRegRMW SDK-50-5
BFRegShift SDK-50-8
BFRegSupported SDK-50-11
BFStructItemGet SDK-52-6, SDK-52-8
BFTick SDK-52-9, SDK-52-12
BFTickDelta SDK-52-11
BFTickRate SDK-52-10, SDK-52-13
BFTimeStructInit SDK-52-69
BiBrdClose SDK-2-15
BiBrdInquire SDK-2-12
BiBrdOpen SDK-2-2
BiBrdOpenCam SDK-2-6
BiBrdOpenCamEx SDK-2-8
BiBrdOpenEx SDK-2-4
BiBrdOpenSWConnector SDK-2-10
BiBufferAlloc SDK-5-3
BiBufferAllocAligned SDK-5-12
BiBufferAllocAlignedCam SDK-5-11
BiBufferAllocCam SDK-5-2
BiBufferArrayGet SDK-5-9
BiBufferAssign SDK-5-5
BiBufferClear SDK-5-10
BiBufferFree SDK-5-7
BiBufferQueueSize SDK-7-14
BiBufferUnassign SDK-5-8
BiCallBackAdd SDK-4-21
BiCallBackRemove SDK-4-23
BiCamClose SDK-3-3
BiCamGetCur SDK-3-6
BiCamGetFileName SDK-3-7
BiCamOpen SDK-3-2
BiCamSel SDK-3-4
BiCamSetCur SDK-3-5
BiCaptureStatusGet SDK-10-3
BiCirBufferStatusGet SDK-7-13
BiCirBufferStatusSet SDK-7-11
BiCircAqSetup SDK-4-10
BiCircAqSetupPitch SDK-4-15

BiCircAqSetupROI SDK-4-12
BiCircCleanUp SDK-4-19
BiCirControl SDK-7-2
BiCirErrorCheck SDK-7-5
BiCirErrorWait SDK-7-4
BiCirStatusGet SDK-7-10
BiCirStatusSet SDK-7-8
BiCirWaitDoneFrame SDK-7-6
BiControlStatusGet SDK-10-2
BiDiskBufRead SDK-9-6
BiDiskBufWrite SDK-9-2
BiDiskParamRead SDK-9-8
BiDVersion SDK-10-4
BiErrorList SDK-11-4
BiErrorShow SDK-11-2
BiErrorTextGet SDK-11-3
BiInternalTimeoutSet SDK-4-20
BiSeqAqSetup SDK-4-2
BiSeqAqSetupPitch SDK-4-7
BiSeqAqSetupROI SDK-4-4
BiSeqBufferStatus SDK-6-10
BiSeqBufferStatusClear SDK-6-11
BiSeqCleanUp SDK-4-18
BiSeqControl SDK-6-4
BiSeqErrorCheck SDK-6-7
BiSeqErrorWait SDK-6-6
BiSeqParameters SDK-6-2
BiSeqStatusGet SDK-6-8
BiSeqWaitDone SDK-6-3
BiSeqWaitDoneFrame SDK-6-9
BitDirectSurfVersion SDK-51-2
BiTrigForce SDK-8-8
BiTrigModeGet SDK-8-6
BiTrigModeSet SDK-8-2

C

CConExposureControlGet SDK-18-50
ChoiceDialog SDK-52-78
CiAqCleanUp SDK-17-13
CiAqCleanUp2Brds SDK-17-14
CiAqCommand SDK-17-10
CiAqFrameSize SDK-17-19, SDK-17-24
CiAqLastLine SDK-17-21
CiAqNextBankSet SDK-17-17
CiAqReengage SDK-17-22
CiAqSetup SDK-17-3
CiAqSetup2Brds SDK-17-7
CiAqWaitDone SDK-17-15
CiBrdAqSigGetCur SDK-13-22

Index

BitFlow, Inc.

CiBrdAqSigSetCur SDK-13-21
CiBrdAqTimeoutSet SDK-13-18
CiBrdCamGetCur SDK-13-19
CiBrdCamGetFileName SDK-13-23
CiBrdCamGetFileNameWithPath SDK-13-24
CiBrdCamGetMMM SDK-13-25
CiBrdCamSel SDK-13-13
CiBrdCamSetCur SDK-13-14
CiBrdClose SDK-13-17
CiBrdInquire SDK-13-15
CiBrdOpen SDK-13-9
CiBrdOpenCam SDK-13-11
CiBrdType SDK-13-20
CiCallBackAdd SDK-15-18
CiCallBackRemove SDK-15-20
CiCamAqTimeoutSet SDK-14-8
CiCamClose SDK-14-7
CiCamInquire SDK-14-4
CiCamModesEnum SDK-14-11
CiCamModeSet SDK-14-9, SDK-14-10
CiCamOpen SDK-14-2
CiCamUpdateParams SDK-14-13
CiChainSIPDisable SDK-19-19
CiChainSIPEnable SDK-19-18
CiConAqCommand SDK-18-2
CiConAqMode SDK-18-41
CiConAqStatus SDK-18-3
CiConCamLineWidthSet SDK-18-57
CiConCtabReset SDK-18-43
CiConDMACommand SDK-18-39
CiConEncoderInputGet SDK-18-26
CiConEncoderInputSel SDK-18-28
CiConExposureControlSet SDK-18-47
CiConExTrigConnect SDK-18-36
CiConExTrigStatus SDK-18-37
CiConFIFOReset SDK-18-42
CiConGetFrameCount SDK-18-44
CiConHTrigModeGet SDK-18-20
CiConHTrigModeSet SDK-18-18
CiConHWTrigStat SDK-18-38
CiConInt SDK-18-4
CiConIntModeGet SDK-18-46
CiConIntModeSet SDK-18-45
CiConIsCameraReady SDK-18-56
CiConNumFramesSet SDK-18-55
CiConSwTrig SDK-18-33
CiConSwTrigStat SDK-18-35
CiConTriggerInputGet SDK-18-22
CiConTriggerInputSet SDK-18-24, SDK-18-31
CiConVTrigModeGet SDK-18-14

CiConVTrigModeGetEx SDK-18-16
CiConVTrigModeSet SDK-18-6
CiConVTrigModeSetEx SDK-18-12
CiCTabFill SDK-20-7
CiCTabHSize SDK-20-10
CiCTabPeek SDK-20-2
CiCTabPoke SDK-20-4
CiCTabRamp SDK-20-8
CiCTabRead SDK-20-5
CiCTabVSize SDK-20-9
CiCTabWrite SDK-20-6
CiEncoderDividerGet SDK-18-54
CiEncoderDividerSet SDK-18-52
CiLutFill SDK-16-9
CiLutPeek SDK-16-2
CiLutPoke SDK-16-3
CiLutRamp SDK-16-11
CiLutRead SDK-16-5
CiLutWrite SDK-16-7
CiMMMIterate SDK-13-26
CiPhysQTabChainBreak SDK-19-15
CiPhysQTabChainEngage SDK-19-16
CiPhysQTabChainLink SDK-19-13
CiPhysQTabChainProgress SDK-19-17
CiPhysQTabCreate SDK-19-7
CiPhysQTabEngage SDK-19-12
CiPhysQTabFree SDK-19-11
CiPhysQTabWrite SDK-19-9
CiRelQTabCreate SDK-19-2
CiRelQTabFree SDK-19-6
CiShutDown SDK-18-40
CiSignalCancel SDK-15-14
CiSignalCreate SDK-15-3
CiSignalFree SDK-15-17
CiSignalNameGet SDK-15-21
CiSignalNextWait SDK-15-13
CiSignalQueueClear SDK-15-16
CiSignalQueueSize SDK-15-15
CiSignalWait SDK-15-9
CiSignalWaitEx SDK-15-11
CiSysBoardFindSWConnector SDK-13-7
CiSysBrdEnum SDK-13-4
CiSysBrdFind SDK-13-5
CiVersion SDK-51-2
clBFGetBaudRate SDK-45-19
clBFGetSerialRef SDK-45-20
clBFGetSerialRefFromBoardHandle SDK-45-
21
clBFSerialCancelRead SDK-45-18
clBFSerialInitFromBoardHandle SDK-45-22

Index

BitFlow, Inc.

clBFSerialRead SDK-45-17
clBFSerialSettings SDK-45-15
clBFSerNumtFromBoardHandle SDK-45-23
clFlushPort SDK-45-3
clGetErrorText SDK-45-4
clGetNumBytesAvail SDK-45-6
clGetNumPorts SDK-45-5
clGetPortInfo SDK-45-7
clGetSupportedBaudRates SDK-45-8
clSeiralInit SDK-45-10
clSerialClose SDK-45-9
clSerialRead SDK-45-11
clSerialReadEx SDK-45-12
clSerialWrite SDK-45-13
clSetBaudRate SDK-45-14

D

DDrawSurfVersion SDK-51-2
DispSurfBlit SDK-46-5
DispSurfChangeSize SDK-46-6
DispSurfClose SDK-46-8
DispSurfCreate SDK-46-2
DispSurfDisableClose SDK-46-14
DispSurfFormatBlit SDK-46-15
DispSurfGetBitmap SDK-46-3
DispSurfGetLut SDK-46-7
DispSurfGetWindow SDK-46-12
DispSurfGetZoom SDK-46-17
DispSurfIsOpen SDK-46-9
DispSurfOffset SDK-46-10
DispSurfSetWindow SDK-46-11
DispSurfSetZoom SDK-46-16
DispSurfTitle SDK-46-13
DispSurfTop SDK-46-4
DispSurfVersion SDK-51-2
DoBrdOpenDialog SDK-52-73

E

ErrorDisableAll SDK-49-2
ErrorDisableBreakUser SDK-49-2
ErrorDisableDebugger SDK-49-2
ErrorDisableDialog SDK-49-2
ErrorDisableEvent SDK-49-2
ErrorDisableFile SDK-49-2
ErrorEnableAll SDK-49-2
ErrorEnableBreakUser SDK-49-2
ErrorEnableDebugger SDK-49-2
ErrorEnableDialog SDK-49-2

ErrorEnableEvent SDK-49-2
ErrorEnableFile SDK-49-2

R

R2AqCleanUp SDK-23-7
R2AqCommand SDK-23-5
R2AqFrameSize SDK-23-10, SDK-23-13, SDK-
37-13
R2AqNextBankSet SDK-23-9
R2AqReengage SDK-23-12
R2AqSetup SDK-23-3
R2AqWaitDone SDK-23-8
R2BrdAqSigGetCur SDK-22-14
R2BrdAqSigSetCur SDK-22-15
R2BrdAqTimeoutSet SDK-22-13
R2BrdCamGetCur SDK-22-19
R2BrdCamGetFileName SDK-22-18
R2BrdCamSel SDK-22-8
R2BrdCamSetCur SDK-22-9
R2BrdClose SDK-22-12
R2BrdInquire SDK-22-10
R2BrdOpen SDK-22-4
R2BrdOpenCam SDK-22-6
R2BrdQTabGetCur SDK-22-16
R2BrdQTabSetCur SDK-22-17
R2CamAqTimeoutSet SDK-24-7
R2CamClose SDK-24-6
R2CamInquire SDK-24-4
R2CamLineScanTimingFreeRunGet SDK-26-6
R2CamLineScanTimingFreeRunGetRange
SDK-26-2
R2CamLineScanTimingFreeRunSet SDK-26-4
R2CamLineScanTimingOneShotGet SDK-26-9
R2CamLineScanTimingOneShotGetRange
SDK-26-7
R2CamLineScanTimingOneShotSet SDK-26-8
R2CamOpen SDK-24-2
R2ChainSIPDisable SDK-30-24
R2ChainSIPEnable SDK-30-23
R2ConAqCommand SDK-28-2
R2ConAqMode SDK-28-4
R2ConAqStatus SDK-28-3
R2ConCtabReset SDK-28-15
R2ConDMACommand SDK-28-6
R2ConExTrigConnect SDK-28-21
R2ConExTrigStatus SDK-28-22
R2ConFIFOReset SDK-28-14
R2ConFreq SDK-29-3
R2ConGPOut SDK-29-4

Index

BitFlow, Inc.

R2ConGPOutGet SDK-28-24
R2ConGPOutSet SDK-28-23
R2ConHMode SDK-29-9
R2ConHTrigModeGet SDK-28-20
R2ConHTrigModeSet SDK-28-19
R2ConHWTrigStat SDK-28-13
R2ConInt SDK-28-5
R2ConQTabBank SDK-29-2
R2ConSwTrig SDK-29-5
R2ConSwTrigStat SDK-28-12
R2ConTapMirror SDK-29-10
R2ConTrigAqCmd SDK-29-6
R2ConTrigSel SDK-29-7
R2ConVMode SDK-29-8
R2ConVTrigModeGet SDK-28-18
R2ConVTrigModeSet SDK-28-16
R2CTabFill SDK-32-14
R2CTabPeek SDK-32-9
R2CTabPoke SDK-32-11
R2CTabRead SDK-32-12
R2CTabWrite SDK-32-13
R2DMAProgress SDK-28-9
R2DMATimeout SDK-28-8
R2DVersion SDK-51-2
R2ErrorDisableAll SDK-34-2
R2ErrorDisableBreakUser SDK-34-2
R2ErrorDisableDebugger SDK-34-2
R2ErrorDisableDialog SDK-34-2
R2ErrorDisableEvent SDK-34-2
R2ErrorDisableFile SDK-34-2
R2ErrorEnableAll SDK-34-2
R2ErrorEnableBreakUser SDK-34-2
R2ErrorEnableDebugger SDK-34-2
R2ErrorEnableDialog SDK-34-2
R2ErrorEnableEvent SDK-34-2
R2ErrorEnableFile SDK-34-2
R2LastLine SDK-28-10
R2LutFill SDK-27-9
R2LutMax SDK-27-13
R2LutPeek SDK-27-2
R2LutPoke SDK-27-3
R2LutRamp SDK-27-11
R2LutRead SDK-27-5
R2LutWrite SDK-27-7
R2PhysQTabChainBreak SDK-30-20
R2PhysQTabChainEngage SDK-30-21
R2PhysQTabChainLink SDK-30-18
R2PhysQTabChainProgress SDK-30-22
R2PhysQTabCreate SDK-30-9
R2PhysQTabEngage SDK-30-17

R2PhysQTabEOC SDK-30-11
R2PhysQTabFree SDK-30-13
R2PhysQTabWrite SDK-30-10
R2QTabFill SDK-33-6
R2QTabPeek SDK-33-2
R2QTabPoke SDK-33-3
R2QTabRead SDK-33-4
R2QTabWrite SDK-33-5
R2RegFlags SDK-31-8
R2RegMask SDK-31-10
R2RegName SDK-31-7
R2RegObjectId SDK-31-11
R2RegPeek SDK-31-2
R2RegPeekWait SDK-31-3
R2RegPoke SDK-31-5
R2RegRMW SDK-31-6
R2RegShift SDK-31-9
R2RelDisplayQTabCreate SDK-30-14
R2RelQTabCreate SDK-30-2
R2RelQTabCreateRoi SDK-30-5
R2RelQTabFree SDK-30-8
R2ShutDown SDK-28-11
R2SignalCancel SDK-25-8
R2SignalCreate SDK-25-3
R2SignalFree SDK-25-11
R2SignalNextWait SDK-25-7
R2SignalQueueClear SDK-25-10
R2SignalQueueSize SDK-25-9
R2SignalWait SDK-25-5
R2SysBoardFindByNum SDK-22-3
R64AqCleanUp SDK-37-7
R64AqCommand SDK-37-5
R64AqFrameSize SDK-37-10
R64AqProgress SDK-37-9
R64AqReengage SDK-37-12
R64AqSetup SDK-37-3
R64AqWaitDone SDK-37-8
R64BrdAqSigGetCur SDK-36-14
R64BrdAqSigSetCur SDK-36-15
R64BrdAqTimeoutSet SDK-36-13
R64BrdCamGetCur SDK-36-17
R64BrdCamGetFileName SDK-36-16
R64BrdCamSel SDK-36-8
R64BrdCamSetCur SDK-36-9
R64BrdClose SDK-36-12
R64BrdInquire SDK-36-10
R64BrdOpen SDK-36-4
R64BrdOpenCam SDK-36-6
R64CamAqTimeoutSet SDK-38-7
R64CamClose SDK-38-6

Index

BitFlow, Inc.

R64CamInquire SDK-38-4
R64CamOpen SDK-38-2
R64ChainSIPDisable SDK-40-11
R64ChainSIPEnable SDK-40-10
R64ConAqCommand SDK-41-2
R64ConAqMode SDK-41-4
R64ConAqStatus SDK-41-3
R64ConDMACommand SDK-41-6
R64ConExposureControlGet SDK-42-23
R64ConExposureControlSet SDK-42-20
R64ConExTrigConnect SDK-42-14
R64ConExTrigStatus SDK-42-15
R64ConFreqSet SDK-42-16
R64ConGPOutGet SDK-41-15, SDK-42-18
R64ConGPOutSet SDK-41-14, SDK-42-17
R64ConHTrigModeGet SDK-42-9
R64ConHTrigModeSet SDK-42-7
R64ConHWTrigStat SDK-42-13
R64ConInt SDK-41-5
R64ConIntModeGet SDK-41-11
R64ConIntModeSet SDK-41-10
R64ConSwTrig SDK-42-11
R64ConSwTrigStat SDK-42-12
R64ConVTrigModeGet SDK-42-5
R64ConVTrigModeSet SDK-42-2
R64CTabFill SDK-43-10
R64CTabPeek SDK-43-5
R64CTabPoke SDK-43-7
R64CTabRead SDK-43-8
R64CTabWrite SDK-43-9
R64DMAProgress SDK-41-8
R64DPMFill SDK-44-6
R64DPMPeek SDK-44-2
R64DPMPoke SDK-44-3
R64DPMRamp SDK-44-7
R64DPMRead SDK-44-4
R64DPMReadDMA SDK-44-8
R64DPMWrite SDK-44-5
R64DVersion SDK-51-2
R64LastLine SDK-42-19
R64LutPeek SDK-41-12
R64LutPoke SDK-41-13
R64QTabChainBreak SDK-40-7
R64QTabChainEngage SDK-40-8
R64QTabChainLink SDK-40-6
R64QTabChainProgress SDK-40-9
R64QTabCreate SDK-40-2
R64QTabEngage SDK-40-5
R64QTabFree SDK-40-4
R64Shutdown SDK-41-9

R64SignalCancel SDK-39-8
R64SignalCreate SDK-39-3
R64SignalFree SDK-39-11
R64SignalNextWait SDK-39-7
R64SignalQueueClear SDK-39-10
R64SignalQueueSize SDK-39-9
R64SignalWait SDK-39-5
R64SysBoardFindByNum SDK-36-3

W

WaitDialogClose SDK-52-76, SDK-52-77
WaitDialogOpen SDK-52-75

Index

BitFlow, Inc.

Index

BitFlow, Inc.

	Table Of Contents
	Preface
	P.1 Purpose
	P.2 The History of the BitFlow APIs
	P.3 The APIs
	P.4 Which API Should I Use?
	P.5 Organization
	P.6 Support Services

	SDK Introduction
	1.1 Overview
	1.2 Camera Configuration Files
	1.3 Specifying Camera Configuration Files
	1.4 SDK Utilities
	1.5 SDK Example Applications
	1.6 Support for Other Languages

	BufIn Introduction
	1.1 Overview

	BufIn Board Functions
	2.1 Introduction
	2.2 BiBrdOpen
	2.3 BiBrdOpenEx
	2.4 BiBrdOpenCam
	2.5 BiBrdOpenCamEx
	2.6 BiBrdOpenSWConnector
	2.7 BiBrdInquire
	2.8 BiBrdClose

	BufIn Camera Functions
	3.1 Introduction
	3.2 BiCamOpen
	3.3 BiCamClose
	3.4 BiCamSel
	3.5 BiCamSetCur
	3.6 BiCamGetCur
	3.7 BiCamGetFileName

	BufIn Acquisition Functions
	4.1 Introduction
	4.2 BiSeqAqSetup
	4.3 BiSeqAqSetupROI
	4.4 BiSeqAqSetupPitch
	4.5 BiCircAqSetup
	4.6 BiCircAqSetupROI
	4.7 BiCircAqSetupPitch
	4.8 BiSeqCleanUp
	4.9 BiCircCleanUp
	4.10 BiInternalTimeoutSet
	4.11 BiCallBackAdd
	4.12 BiCallBackRemove

	BufIn Memory Functions
	5.1 Introduction
	5.2 BiBufferAllocCam
	5.3 BiBufferAlloc
	5.4 BiBufferAssign
	5.5 BiBufferFree
	5.6 BiBufferUnassign
	5.7 BiBufferArrayGet
	5.8 BiBufferClear
	5.9 BiBufferAllocAlignedCam
	5.10 BiBufferAllocAligned

	BufIn Sequence Capture Management
	6.1 Introduction
	6.2 BiSeqParameters
	6.3 BiSeqWaitDone
	6.4 BiSeqControl
	6.5 BiSeqErrorWait
	6.6 BiSeqErrorCheck
	6.7 BiSeqStatusGet
	6.8 BiSeqWaitDoneFrame
	6.9 BiSeqBufferStatus
	6.10 BiSeqBufferStatusClear

	BufIn Circular Capture Management
	7.1 Introduction
	7.2 BiCirControl
	7.3 BiCirErrorWait
	7.4 BiCirErrorCheck
	7.5 BiCirWaitDoneFrame
	7.6 BiCirStatusSet
	7.7 BiCirStatusGet
	7.8 BiCirBufferStatusSet
	7.9 BiCirBufferStatusGet
	7.10 BiBufferQueueSize

	BufIn Trigger Functions
	8.1 Introduction
	8.2 BiTrigModeSet
	8.3 BiTrigModeGet
	8.4 BiTrigForce

	BufIn Disk I/O Functions
	9.1 Introduction
	9.2 BiDiskBufWrite
	9.3 BiDiskBufRead
	9.4 BiDiskParamRead

	BufIn Status Functions
	10.1 Introduction
	10.2 BiControlStatusGet
	10.3 BiCaptureStatusGet
	10.4 BiDVersion

	BufIn Error Functions
	11.1 Introduction
	11.2 BiErrorShow
	11.3 BiErrorTextGet
	11.4 BiErrorList

	Camera Interface (Ci) Introduction
	12.1 Overview

	Ci System Open and Initialization
	13.1 Introduction
	13.2 Specifying Camera Configuration Files
	13.3 CiSysBrdEnum
	13.4 CiSysBrdFind
	13.5 CiSysBoardFindSWConnector
	13.6 CiBrdOpen
	13.7 CiBrdOpenCam
	13.8 CiBrdCamSel
	13.9 CiBrdCamSetCur
	13.10 CiBrdInquire
	13.11 CiBrdClose
	13.12 CiBrdAqTimeoutSet
	13.13 CiBrdCamGetCur
	13.14 CiBrdType
	13.15 CiBrdAqSigSetCur
	13.16 CiBrdAqSigGetCur
	13.17 CiBrdCamGetFileName
	13.18 CiBrdCamGetFileNameWithPath
	13.19 CiBrdCamGetMMM
	13.20 CiMMMIterate

	Ci Camera Configuration
	14.1 Introduction
	14.2 CiCamOpen
	14.3 CiCamInquire
	14.4 CiCamClose
	14.5 CiCamAqTimeoutSet
	14.6 CiCamModeSet
	14.7 CiCamModeGet
	14.8 CiCamModesEnum
	14.9 CiCamUpdateParams

	Ci Signal Functions
	15.1 Introduction
	15.2 CiSignalCreate
	15.3 CiSignalWait
	15.4 CiSignalWaitEx
	15.5 CiSignalNextWait
	15.6 CiSignalCancel
	15.7 CiSignalQueueSize
	15.8 CiSignalQueueClear
	15.9 CiSignalFree
	15.10 CiCallBackAdd
	15.11 CiCallBackRemove
	15.12 CiSignalNameGet

	Ci LUTs
	16.1 Introduction
	16.2 CiLutPeek
	16.3 CiLutPoke
	16.4 CiLutRead
	16.5 CiLutWrite
	16.6 CiLutFill
	16.7 CiLutRamp

	Ci Acquisition
	17.1 Introduction
	17.2 CiAqSetup
	17.3 CiAqSetup2Brds
	17.4 CiAqCommand
	17.5 CiAqCleanUp
	17.6 CiAqCleanUp2Brds
	17.7 CiAqWaitDone
	17.8 CiAqNextBankSet
	17.9 CiAqFrameSize
	17.10 CiAqLastLine
	17.11 CiAqReengage
	17.12 CiAqROISet

	Ci Mid-Level Control Functions
	18.1 Introduction
	18.2 CiConAqCommand
	18.3 CiConAqStatus
	18.4 CiConInt
	18.5 CiConVTrigModeSet
	18.6 CiConVTrigModeSetEx
	18.7 CiConVTrigModeGet
	18.8 CiConVTrigModeGetEx
	18.9 CiConHTrigModeSet
	18.10 CiConHTrigModeGet
	18.11 CiConTriggerInputGet
	18.12 CiConTriggerInputSet
	18.13 CiConEncoderInputGet
	18.14 CiConEncoderInputSet
	18.15 CiConTriggerInputSet
	18.16 CiConSwTrig
	18.17 CiConSwTrigStat
	18.18 CiConExTrigConnect
	18.19 CiConExTrigStatus
	18.20 CiConHWTrigStat
	18.21 CiConDMACommand
	18.22 CiShutDown
	18.23 CiConAqMode
	18.24 CiConFIFOReset
	18.25 CiConCtabReset
	18.26 CiConGetFrameCount
	18.27 CiConIntModeSet
	18.28 CiConIntModeGet
	18.29 CiConExposureControlSet
	18.30 CiConExposureControlGet
	18.31 CiEncoderDividerSet
	18.32 CiEncoderDividerGet
	18.33 CiConNumFramesSet
	18.34 CiConIsCameraReady
	18.35 CiConCamLineWidthSet

	Ci Quad Table Functions
	19.1 Introduction
	19.2 CiRelQTabCreate
	19.3 CiRelQTabFree
	19.4 CiPhysQTabCreate
	19.5 CiPhysQTabWrite
	19.6 CiPhysQTabFree
	19.7 CiPhysQTabEngage
	19.8 CiPhysQTabChainLink
	19.9 CiPhysQTabChainBreak
	19.10 CiPhysQTabChainEngage
	19.11 CiPhysQTabChainProgress
	19.12 CiChainSIPEnable
	19.13 CiChainSIPDisable

	Ci Control Tables
	20.1 Introduction
	20.2 CiCTabPeek
	20.3 CiCTabPoke
	20.4 CiCTabRead
	20.5 CiCTabWrite
	20.6 CiCTabFill
	20.7 CiCTabRamp
	20.8 CiCTabVSize
	20.9 CiCTabHSize

	Road Runner and R3 Introduction
	21.1 Overview
	21.2 Where is the R3 or PMC API?

	Road Runner/R3 System Open and Initialization
	22.1 Introduction
	22.2 R2SysBoardFindByNum
	22.3 R2BrdOpen
	22.4 R2BrdOpenCam
	22.5 R2BrdCamSel
	22.6 R2BrdCamSetCur
	22.7 R2BrdInquire
	22.8 R2BrdClose
	22.9 R2BrdAqTimeoutSet
	22.10 R2BrdAqSigGetCur
	22.11 R2BrdAqSigSetCur
	22.12 R2BrdQTabGetCur
	22.13 R2BrdQTabSetCur
	22.14 R2BrdCamGetFileName
	22.15 R2BrdCamGetCur

	Road Runner/R3 Acquisition
	23.1 Introduction
	23.2 R2AqSetup
	23.3 R2AqCommand
	23.4 R2AqCleanUp
	23.5 R2AqWaitDone
	23.6 R2AqNextBankSet
	23.7 R2AqFrameSize
	23.8 R2AqReengage
	23.9 R2AqROISet

	Road Runner/R3 Camera Configuration
	24.1 Introduction
	24.2 R2CamOpen
	24.3 R2CamInquire
	24.4 R2CamClose
	24.5 R2CamAqTimeoutSet

	Road Runner/R3 Interrupt Signals
	25.1 Introduction
	25.2 R2SignalCreate
	25.3 R2SignalWait
	25.4 R2SignalNextWait
	25.5 R2SignalCancel
	25.6 R2SignalQueueSize
	25.7 R2SignalQueueClear
	25.8 R2SignalFree

	Road Runner/R3 Camera Control Functions
	26.1 Introduction
	26.2 R2CamLineScanTimingFreeRunGetRange
	26.3 R2CamLineScanTimingFreeRunSet
	26.4 R2CamLineScanTimingFreeRunGet
	26.5 R2CamLineScanTimingOneShotGetRange
	26.6 R2CamLineScanTimingOneShotSet
	26.7 R2CamLineScanTimingOneShotGet

	Road Runner/R3 LUTS
	27.1 Introduction
	27.2 R2LutPeek
	27.3 R2LutPoke
	27.4 R2LutRead
	27.5 R2LutWrite
	27.6 R2LutFill
	27.7 R2LutRamp
	27.8 R2LutMax

	Road Runner/R3 Mid-Level Control Functions
	28.1 Introduction
	28.2 R2ConAqCommand
	28.3 R2ConAqStatus
	28.4 R2ConAqMode
	28.5 R2ConInt
	28.6 R2ConDMACommand
	28.7 R2DMATimeout
	28.8 R2DMAProgress
	28.9 R2LastLine
	28.10 R2ShutDown
	28.11 R2ConSwTrigStat
	28.12 R2ConHWTrigStat
	28.13 R2ConFIFOReset
	28.14 R2ConCtabReset
	28.15 R2ConVTrigModeSet
	28.16 R2ConVTrigModeGet
	28.17 R2ConHTrigModeSet
	28.18 R2ConHTrigModeGet
	28.19 R2ConExTrigConnect
	28.20 R2ConExTrigStatus
	28.21 R2ConGPOutSet
	28.22 R2ConGPOutGet

	Road Runner/R3 Data Control Functions
	29.1 Introduction
	29.2 R2ConQTabBank
	29.3 R2ConFreq
	29.4 R2ConGPOut
	29.5 R2ConSwTrig
	29.6 R2ConTrigAqCmd
	29.7 R2ConTrigSel
	29.8 R2ConVMode
	29.9 R2ConHMode
	29.10 R2ConTapMirror

	Road Runner/R3 Quad Table Functions
	30.1 Introduction
	30.2 R2RelQTabCreate
	30.3 R2RelQTabCreateRoi
	30.4 R2RelQTabFree
	30.5 R2PhysQTabCreate
	30.6 R2PhysQTabWrite
	30.7 R2PhysQTabEOC
	30.8 R2PhysQTabFree
	30.9 R2RelDisplayQTabCreate
	30.10 R2PhysQTabEngage
	30.11 R2PhysQTabChainLink
	30.12 R2PhysQTabChainBreak
	30.13 R2PhysQTabChainEngage
	30.14 R2PhysQTabChainProgress
	30.15 R2ChainSIPEnable
	30.16 R2ChainSIPDisable

	Road Runner/R3 Register Access
	31.1 Introduction
	31.2 R2RegPeek
	31.3 R2RegPeekWait
	31.4 R2RegPoke
	31.5 R2RegRMW
	31.6 R2RegName
	31.7 R2RegFlags
	31.8 R2RegShift
	31.9 R2RegMask
	31.10 R2RegObjectId

	Road Runner/R3 Control Tables
	32.1 Introduction
	32.2 Modifying CTABS from Software
	32.3 Controlling the Exposure on a Dalsa Line Scan Camera
	32.4 Changing Exposure Time in Double Pulse Mode on the Pulnix TM- 9700
	32.5 Controlling Exposure Time in the One Shot Mode on Kodak Cameras
	32.6 R2CTabPeek
	32.7 R2CTabPoke
	32.8 R2CTabRead
	32.9 R2CTabWrite
	32.10 R2CTabFill

	Road Runner Quad Tables
	33.1 Introduction
	33.2 R2QTabPeek
	33.3 R2QTabPoke
	33.4 R2QTabRead
	33.5 R2QTabWrite
	33.6 R2QTabFill

	Road Runner/R3 Error Handling
	34.1 Introduction
	34.2 R2ErrorXXXXXX

	R64 Introduction
	35.1 Overview

	R64 System Open and Initialization
	36.1 Introduction
	36.2 R64SysBoardFindByNum
	36.3 R64BrdOpen
	36.4 R64BrdOpenCam
	36.5 R64BrdCamSel
	36.6 R64BrdCamSetCur
	36.7 R64BrdInquire
	36.8 R64BrdClose
	36.9 R64BrdAqTimeoutSet
	36.10 R64BrdAqSigGetCur
	36.11 R64BrdAqSigSetCur
	36.12 R64BrdCamGetFileName
	36.13 R64BrdCamGetCur

	R64 Acquisition
	37.1 Introduction
	37.2 R64AqSetup
	37.3 R64AqCommand
	37.4 R64AqCleanUp
	37.5 R64AqWaitDone
	37.6 R64AqProgress
	37.7 R64AqFrameSize
	37.8 R64AqReengage
	37.9 R64AqROISet

	R64 Camera Configuration
	38.1 Introduction
	38.2 R64CamOpen
	38.3 R64CamInquire
	38.4 R64CamClose
	38.5 R64CamAqTimeoutSet

	R64 Interrupt Signals
	39.1 Introduction
	39.2 R64SignalCreate
	39.3 R64SignalWait
	39.4 R64SignalNextWait
	39.5 R64SignalCancel
	39.6 R64SignalQueueSize
	39.7 R64SignalQueueClear
	39.8 R64SignalFree

	R64 Quad Table Functions
	40.1 Introduction
	40.2 R64QTabCreate
	40.3 R64QTabFree
	40.4 R64QTabEngage
	40.5 R64QTabChainLink
	40.6 R64QTabChainBreak
	40.7 R64QTabChainEngage
	40.8 R64QTabChainProgress
	40.9 R64ChainSIPEnable
	40.10 R64ChainSIPDisable

	R64 Mid-Level Control Functions
	41.1 Introduction
	41.2 R64ConAqCommand
	41.3 R64ConAqStatus
	41.4 R64ConAqMode
	41.5 R64ConInt
	41.6 R64ConDMACommand
	41.7 R64DMAProgress
	41.8 R64Shutdown
	41.9 R64ConIntModeSet
	41.10 R64ConIntModeGet
	41.11 R64LutPeek
	41.12 R64LutPoke
	41.13 R64ConGPOutSet
	41.14 R64ConGPOutGet

	R64 Control Functions
	42.1 Introduction
	42.2 R64ConVTrigModeSet
	42.3 R64ConVTrigModeGet
	42.4 R64ConHTrigModeSet
	42.5 R64ConHTrigModeGet
	42.6 R64ConSwTrig
	42.7 R64ConSwTrigStat
	42.8 R64ConHwTrigStat
	42.9 R64ConExTrigConnect
	42.10 R64ConExTrigStatus
	42.11 R64ConFreqSet
	42.12 R64ConGPOutSet
	42.13 R64ConGPOutGet
	42.14 R64LastLine
	42.15 R64ConExposureControlSet
	42.16 R64ConExposureControlGet

	R64 Control Tables
	43.1 Introduction
	43.2 Modifying CTABS from Software
	43.3 Example Code Showing Modifying The CTabs From Software
	43.4 R64CTabPeek
	43.5 R64CTabPoke
	43.6 R64CTabRead
	43.7 R64CTabWrite
	43.8 R64CTabFill

	R64 Dual Port Memory
	44.1 Introduction
	44.2 R64DPMPeek
	44.3 R64DPMPoke
	44.4 R64DPMRead
	44.5 R64DPMWrite
	44.6 R64DPMFill
	44.7 R64DPMRamp
	44.8 R64DPMReadDMA

	Camera Link Specification Serial Interface
	45.1 Introduction
	45.2 clFlushPort
	45.3 clGetErrorText
	45.4 clGetNumPorts
	45.5 clGetNumBytesAvail
	45.6 clGetPortInfo
	45.7 clGetSupportedBaudRates
	45.8 clSerialClose
	45.9 clSerialInit
	45.10 clSerialRead - Deprecated as of CL 2.1
	45.11 clSerialReadEx
	45.12 clSerialWrite
	45.13 clSetBaudRate
	45.14 clBFSerialSettings
	45.15 clBFSerialRead
	45.16 clBFSerialCancelRead
	45.17 clBFGetBaudRate
	45.18 clBFGetSerialRef
	45.19 clBFGetSerialRefFromBoardHandle
	45.20 clBFSerialInitFromBoardHandle
	45.21 clBFSerNumtFromBoardHandle

	Display Functions
	46.1 Introduction
	46.2 DispSurfCreate
	46.3 DispSurfGetBitmap
	46.4 DispSurfTop
	46.5 DispSurfBlit
	46.6 DispSurfChangeSize
	46.7 DispSurfGetLut
	46.8 DispSurfClose
	46.9 DispSurfIsOpen
	46.10 DispSurfOffset
	46.11 DispSurfSetWindow
	46.12 DispSurfGetWindow
	46.13 DispSurfTitle
	46.14 DispSurfDisableClose
	46.15 DispSurfFormatBlit
	46.16 DispSurfSetZoom
	46.17 DispSurfGetZoom

	BitFlow Common Functions Introduction
	47.1 Overview

	CoaXPress specific functions
	48.1 Introduction
	48.2 BFCXPReadReg
	48.3 BFCXPWriteReg
	48.4 BFCXPReadData
	48.5 BFCXPWriteData
	48.6 BFCXPConfigureLinkSpeed
	48.7 BFCXPFindMasterLink
	48.8 BFCXPIsPowerUp

	BitFlow Error Handling
	49.1 Introduction
	49.2 BFErrorXXXXXX
	49.3 BFErrorShow
	49.4 BFErrorCheck
	49.5 BFErrorClearAll
	49.6 BFErrorGetLast
	49.7 BFErrorClearLast
	49.8 BFErrorDefaults
	49.9 BFErrorGetMes

	BitFlow Register Access
	50.1 Introduction
	50.2 BFRegPeek
	50.3 BFRegPeekWait
	50.4 BFRegPoke
	50.5 BFRegRMW
	50.6 BFRegName
	50.7 BFRegFlags
	50.8 BFRegShift
	50.9 BFRegMask
	50.10 BFRegObjectId
	50.11 BFRegSupported
	50.12 BFRegAddr

	BitFlow Version Control Functions
	51.1 Introduction
	51.2 BFDriverVersion, R2DVersion, BFDVersion, BFErVersion, DispSurfVersion, DDrawSurfVersion, BitDirectSurfVersion, CiDVersion, R64DVersion
	51.3 BFBuildNumber
	51.4 BFReadHWRevision
	51.5 BFReadFWRevision

	BitFlow Miscellaneous Functions
	52.1 Introduction
	52.2 BFQTabModeRequest
	52.3 BFChainSIPEnable
	52.4 BFChainSIPDisable
	52.5 BFStructItemGet
	52.6 BFStructItemSet
	52.7 BFTick
	52.8 BFTickRate
	52.9 BFTickDelta
	52.10 BFFine
	52.11 BFFineRate
	52.12 BFFineDelta
	52.13 BFFineWait
	52.14 BFDrvReady
	52.15 BFIsCL
	52.16 BFIsR3
	52.17 BFIsR2
	52.18 BFIsRv
	52.19 BFIsR64Board
	52.20 BFIsR64
	52.21 BFIsPMC
	52.22 BFIsPLDA
	52.23 BFIsKbn
	52.24 BFIsKbn4
	52.25 BFIsKbn2
	52.26 BFIsKbnBase
	52.27 BFIsKbnFull
	52.28 BFIsKbnCXP
	52.29 BFIsKbnCXP1
	52.30 BFIsKbnCXP2
	52.31 BFIsKbnCXP4
	52.32 BFIsNeonBase
	52.33 BFIsNeonD
	52.34 BFIsNeonQ
	52.35 BFIsNeonDif
	52.36 BFIsAlta
	52.37 BFIsAlta1
	52.38 BFIsAlta2
	52.39 BFIsAlta4
	52.40 BFIsSlave
	52.41 BFIsAxn
	52.42 BFIsAxn1xE
	52.43 BFIsAxn2xE
	52.44 BFIsAxn2xB
	52.45 BFIsAxn4xB
	52.46 BFIsMaster
	52.47 BFIsAltaAN
	52.48 BFIsAltaCO
	52.49 BFIsAltaYPC
	52.50 BFIsEncDiv
	52.51 BFIsNTG
	52.52 BFIsGn2
	52.53 BFIsCtn
	52.54 BFIsCXP
	52.55 BFIsCXP2
	52.56 BFIsCXP4
	52.57 BFIsAon
	52.58 BFIsAonCXP1
	52.59 BFIsAxnII
	52.60 BFIsCtnII
	52.61 BFIsClx
	52.62 BFIsClxCXP2
	52.63 BFIsClxCXP4
	52.64 BFIsSynthetic
	52.65 BFHasSerialPort
	52.66 BFCurrentTimeGet
	52.67 BFTimeStructInit
	52.68 BFHiResTimeStampInit
	52.69 BFHiResTimeStamp
	52.70 BFHiResTimeStampEx
	52.71 DoBrdOpenDialog
	52.72 WaitDialogOpen
	52.73 WaitDialogClose
	52.74 WaitDialogClose
	52.75 ChoiceDialog
	52.76 BFGetCurrentFimwareName
	52.77 BFGetVFGNum
	52.78 BFReadSerialNumberString
	52.79 BFOutputDebugString

	BitFlow Disk I/O Functions
	53.1 Introduction
	53.2 BFIOWriteSingle
	53.3 BFIOWriteMultiple
	53.4 BFIOReadSingle
	53.5 BFIOReadMultiple
	53.6 BFIOReadParameters
	53.7 BFIOSaveDlg
	53.8 BFIOOpenDlg
	53.9 BFIOErrorShow
	53.10 BFIOErrorGetMes
	53.11 BFIOWriteSingleEx
	53.12 BFIOReadSingleEx
	53.13 BFIOReadParametersEx
	53.14 BFIOMakeExParams
	53.15 BFIOFreeExParams
	53.16 BFIOClearExParams

	BitFlow Types
	54.1 List of Defined Types

	Index

